Network Theorems

(Application to dc
Networks)

EXN| inTrRODUCTION

In Chapter 2, we have studied elementary network theorems like Kirchhoff’s laws, mesh analysis and node
analysis. There are some other methods also to analyse circuits. In this chapter, we will study superposition
theorem, Thevenin’s theorem, Norton’s theorem, maximum power transfer theorem, reciprocity theorem,
Millman’s theorem, Tellegen’s theorem, substitution theorem and compensation theorem. We can find
currents and voltages in various parts of the circuits with these methods.

IEXN| suPERPOSITION THEOREM

It states that ‘in a linear network containing more than one independent source and dependent source,
the resultant current in any element is the algebraic sum of the currents that would be produced by each
independent source acting alone, all the other independent sources being represented meanwhile by their
respective internal resistances.’

The independent voltage sources are represented by their internal resistances if given or simply with zero
resistances, 1.e., short circuits if internal resistances are not mentioned. The independent current sources are
represented by infinite resistances, i.e., open circuits.

The dependent sources are not sources but dissipative components—hence they are active at all times. A
dependent source has zero value only when its control voltage or current is zero.

A linear network is one whose parameters are constant, i.e., they do not change with voltage and current.

Explanation Consider the network shown in Fig. 3.1. Suppose we have to find current /, through
resistor R,

Fig. 3.1 Network to illustrate superposition theorem



3.2 Network Analysis and Synthesis

The current flowing through resistor R, due to
constant voltage source V' is found to be say /. (with
proper direction), representing constant current source
with infinite resistance, i.e., open circuit.

The current flowing through resistor R, due to
constant current source / is found to be say ) (with
proper direction), representing the constant voltage
source with zero resistance or short circuit.

The resultant current /, through resistor R, is found
by superposition theorem.

Iy=1,+1]

Steps to be followed in Superposition Theorem

1. Find the current through the resistance when only
one independent source is acting, replacing all
other independent sources by respective internal
resistances.

Fig. 3.2 When voltage source V is acting alone

R

R,

NNV

<~

NNV

Ra Q /

Fig. 3.3 When current source I is acting alone

2. Find the current through the resistance for each of the independent sources.
3. Find the resultant current through the resistance by the superposition theorem considering magnitude and

direction of each current.

" ETIACEN  Find the current through the 2 2 resistor in Fig. 3.4.

— 10V

50 20V 20
AN I AN
40V — 10Q
Fig. 3.4
Solution
Step I When the 40 V source is acting alone (Fig. 3.5)
/ 5Q / 2Q
——\W\ AN
40V —— 10Q
Fig. 3.5
By series parallel reduction technique (Fig. 3.6),
I= 0 _
5+1.67
From Fig. 3.5, by current-division rule,
I'=6x =5A(—>)
10+2

40V =

5Q

1.67 Q

Fig. 3.6



3.2 Superposition Theorem 3.3

Step II 'When the 20 V source is acting alone (Fig. 3.7)

| 5Q 20V 20 %
——\W\ I ANN—
10 Q
Fig. 3.7
By series—parallel reduction technique (Fig. 3.8), ! /f/\g/)\/ 2(|)IV
1= 20 _ 3A
5+1.67 1.67 Q
From Fig. 3.7, by current-division rule,
” 10 Fig. 3.8
1”7 =3x%x =25A(«)=-25A (—-) -
10+2
Step III 'When the 10 V source is acting alone (Fig. 3.9)
5Q 2Q
NV AVAVAY
10Q —_— 10V
Fig. 3.9
By series—parallel reduction technique (Fig. 3.10), ! 2
> NV l
m 10 10V
1”7 = =1.88A(—
13310 (=) 3330 ?
Step IV By superposition theorem,
I=1"+1"+1"=5-25+188=438A (—) Fig. 3.10
"m Find the current through the 1 £2 resistor in Fig. 3.11.
4Q
NN
J_ 50V J_ 40V
100V = 10 20

Fig. 3.11
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Solution
Step I When the 100 V source is acting alone (Fig. 3.12)

/ 4Q
T VVv r
100V 1Q § 2Q
Fig. 3.12
By series—parallel reduction technique (Fig. 3.13), i ,\4/\(/2\/
100
From Fig. 3.12, by current-division rule,
2 =
I'=2141x——=1427 A(L) Fig. 3.13
2+1
Step II When the 50 V source is acting alone (Fig. 3.14)
40
NV
J_ 50V
§ 2Q
1Q
Fig. 3.14
By series—parallel reduction technique (Fig. 3.15), Ii
50 50 V
1" = =2146 A(T)=-21.46A(1) §1.339
1+1.33
1Q
Step III 'When the 40 V source is acting alone (Fig. 3.16)
Fig. 3.15
4Q /
AYAYAY <
I L 40V
1Q 2Q

Fig. 3.16



By series—parallel reduction technique (Fig. 3.17),
40
0.8+2

From Fig. 3.16, by current-division rule,

=1429 A

17 =1429x—— = 11.43A())
4+1

Step IV By superposition theorem,
T=I'+1"+1"=1427-21.46+11.43 =424 A(})

"m Find the current through the
5Q

3.2 Superposition Theorem 3.5

/

<

O.BQ§

<<

1

40V

2Q

8 2 resistor in Fig. 3.18.

Fig. 3.17

10 Q 12Q
AYAAY AYA%AY AYAYAY
4V —/ §1SQ ;BQ — 6V
Fig. 3.18
Solution
Step I 'When the 4 V source is acting alone (Fig. 3.19)
I 50 L 10Q 120
A VAVAY —\\\ ; AVAYAY
4V —— § 15Q 8Q
Fig. 3.19
By series—parallel reduction technique (Fig. 3.20),
I 5Q [, 10Q | 5Q I,
—— VW A\ ——\V\\ >
4V —|— §1SQ ;4.89 4V —( ;159 ;14.89
(a) (b)
4 / 5Q
I= —032A VWV
5+7.45
From Fig. 3.20(b), by current-division rule, Ay -
L = 0.32><175 =0.16 A
15+14.8
From Fig. 3.19, by current-division rule,
(©)
12
I"=0.16x =0.096 A({) ]
12+38 Fig. 3.20
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Step I When the 6 V source is acting alone (Fig. 3.21)

3.75Q §

5Q 10Q 12Q
AVAYAY NV NV
§ 15Q § 8Q — 6V
Fig. 3.21
By series—parallel reduction technique (Fig. 3.22),
10Q 12 Q 12 Q /
NN\ AVAVAY, AN\ ———<—
2
;89 — 6V 13.75£2§ 8 Q — 6V
(a) (b)
6 12Q /
[=——=035A MV <
12+5.06
From Fig. 3.22(b), by current division rule, 5.06 Q §
13.75
[”=035x—————=0.22 A(4)
13.75+8
Step III By superposition theorem, ©
c
I=1"+1"=0.096+022=0316 A( 1) )
Fig. 3.22

" ETNACERW  Find the current through the 4 Qresistor in Fig. 3.23.

Solution

40V =

Q 8A

12 Q 4Q
AN AN
;59 §3Q
Fig. 3.23

Step I When the 40 V source is acting alone (Fig. 3.24)

/

40V —/

r
—>— AANA >

12Q

4Q

S50

NNV

S0

Fig. 3.24

6V



3.2 Superposition Theorem 3.7

By series—parallel reduction technique (Fig. 3.25),
| 120 r | 12Q
—\V W\ > > AN
40V —|/— §5£2 §7Q 40V —— §Z.QZQ
(a) (b)
Fig. 3.25
1=—2  _s6sa
12+2.92

From Fig. 3.25(a), by current-division rule,
, 5
I"'=268x——=1.12A(—5)=-1.12 A(«)

Step I ' When the 8 A source is acting alone (Fig. 3.26)
12 Q 4Q
NN\

§59 §39 Q 8A

Fig. 3.26

By series—parallel reduction technique (Fig. 3.27),

p
§3§z Q 8A 7.539§ ;sg Q 8 A

A -

4 Q

3.53 Q

Fig. 3.27

X 3 =228A(¢«)
7.53+3

Step III By superposition theorem,
I=01"+1"=-112+228=1.16 A(«)
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"m Find the current in the 10 Qresistor in Fig. 3.28.

2Q

NV

e §109 Q 4A

10V
_|,

S 50

Fig. 3.28

Solution

Step I When the 10 V source is acting alone (Fig. 3.29)

2Q

1Q
§1OQ
10V
_‘,

NV

S50

Fig. 3.29

By series—parallel reduction technique (Fig. 3.30),

1Q
10 Q §7Q

oV
_|,

Fig. 3.30

I 10
1+4.12

From Fig. 3.30 (a), by current-division rule,

I’=195x% 7
7+10

1Q

10V
T

Y —

§ 412 Q

=195A

=08 AW()
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Step II When the 4 A source is acting alone (Fig. 3.31)

19; 10Q Q 4 A §SQ

Fig. 3.31

By series—parallel reduction technique (Fig. 3.32),

2Q
AA—=

0.91Q§ Q 4A §5Q 2.91Q§ Q 4A gsg

‘k\

(@) (b)

Fig. 3.32
5
I=4x =2.53A
291+5

From Fig. 3.31, by current-division rule,

I”=2.53x%x !
1+10

—023A(4)

Step II1 By superposition theorem,
I=1"+1"=08+023=1.03A(!)

" SEIWNERW  Find the current through the 8 82 resistor in Fig. 3.33.

8Q
NV

SACD §129 gsosz G 25 A

Fig. 3.33

3.9
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Solution
Step I When the 5 A source is acting alone (Fig. 3.34)

, 12
3N S
12+8+30

=12A(>)

Step II When the 25 A source is acting alone (Fig. 3.35)

30

17 =25x——
30+12+8

=15A (—)

Step III By superposition theorem,

[=0"+1"=12+15=16.2 A(—>)

8 Q

Y~

o ()

;129

Fig. 3.34

8 Q

Y =<

12£2§

;309

Fig. 3.35

" ETNINCENA  Find the current through the 4 2 resistor in Fig. 3.36.

S 40

S 40

2Q
AN\
5A 6O
5Q
AVAVAY
1 .
20V T
Fig. 3.36
Solution
Step I When the 5 A source is acting alone (Fig. 3.37)
2Q
AVA%AY
() y
5Q
AVAVAY
6 Q
Fig. 3.37

By series—parallel reduction technique (Fig. 3.38),



3.2 Superposition Theorem 3.11

2Q
AAAY
2Q I
60 AAYAY >
5A 4Q
<£> § 5A<£) §873Q §4Q
2.73Q
(a) (b)
Fig. 3.38
8.73
I"=5x% =343A)
8.73+4
Step II 'When the 20 V source is acting alone (Fig. 3.39)
2Q
AN\
6 Q
/ 5Q %
; 4Q
6Q
20V —‘—
Fig. 3.39
By series—parallel reduction technique (Fig. 3.40),
| 5Q I 5Q
——V\W\ > AAYAY
20V — §6£2 §1OQ 20V — ;3.759
(a) (b)
Fig. 3.40
I= 20 =229A
5+3.75
From Fig. 3.40 (a), by current-division rule,
6
=0.86A()

1”7 =229x%
6+10

Step III By superposition theorem
I=0I"+1"=343+086=429A ()
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" SETWNER M  Find the current through the 3 82 resistor in Fig. 3.41.

Sa0

2Q
NN
5Q 3Q
5A (D
10Q 4Q — 20V
Fig. 3.41
Solution
Step I When the 5 A source is acting alone (Fig. 3.42)
2Q
AVAAY
5Q 3Q
5A (D
10Q 40
| | | | Fig. 3.42 . 20
By series—parallel reduction technique (Fig. 3.43), A\
rosx— 12 3 75 A()
154243 sa (1) ;159
Step II 'When the 20 V source is acting alone (Fig. 3.44)
20 Fig. 3.43
NV
50 3Q
1% I
100 40 — 20V
Fig. 3.44
By series—parallel reduction technique (Fig. 3.45),
I / /
209§ §4Q — 20V 3.339§ —L 5oy

Fig. 3.45




From Fig. 3.45(a), by current-division rule,

I”"=6x 4
20+

Step III By superposition theorem,

I=I"+1"=375-1=275A (1)

" SEIWIIERN  Find the current in the 1 2 resistors in Fig. 3.46.

3.2 Superposition Theorem 3.13

i 1AM =-1A{)

S

2Q 3Q

AVAYAY; AVAVAY,
4V — §1Q
Fig. 3.46

. 20 30
Solution AN - AN
Step I When the 4 V source is acting alone (Fig. 3.47)

4\ —— 1Q
, 4
I'=——=133A({)
2+1
Step I 'When the 3 A source is acting alone (Fig. 3.48) Fig. 3.47
By current-division rule, 50 30
2 NV —\\V\
1"=3x——=2A() ’
1+2
1Q (f 3A
Step III 'When the 1 A source is acting alone (Fig. 3.49)
1A
@ Fig. 3.48
2Q 3Q
NV NV

§1g

Fig. 3.49
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Redrawing the network (Fig. 3.50),

By current-division rule, 30

2 2Q
I” =1x——=0.66 A({) ;
2+1 A

Step IV By superposition theorem,

I=0"+1"+17=133+2+0.66=4A (1) Fig. 3.50

" SEINIIEROR  Find the voltage V,ginFig. 3.51.

+
N 50Q
SACP — 10V

oB

Fig. 3.51

Solution
Step I When the 6 V source is acting alone (Fig. 3.52)

Vig=6V A
6V — §5§2

1Q

Fig. 3.52
5Q

Step I When the 10 V source is acting alone (Fig. 3.53)
Since the resistor of 5 € is shorted, the voltage across it is zero. 10V

VA’l/g =10V

Step III 'When the 5 A source is acting alone (Fig. 3.54)

Due to short circuit in both the parts,
VA”B’ =0 § 5Q

Step IV By superposition theorem,

Vg ZVA;Q +VA,1,; +VA/§ =6+10+0=16V
Fig. 3.54
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" SEINIIENEN  Find the current through the 5 Qresistor in Fig. 3.55.

5Q 10Q
NV AVAVAY
24\ —— ZACfD §2OQ —36V
Fig. 3.55
Solution
Step I When the 24 V source is acting alone (Fig. 3.56)
5Q 10 Q
AA%AY AAYAY
24V —(— 20 Q
Flg. 3.56 50Q
/
By series—parallel reduction technique (Fig. 3.57), . VWV
24 1
= =2.06 A(—>)=-2.06 A(«) 24V -
5+6.67
Step I' 'When the 2 A source is acting alone
By series—parallel reduction technique (Fig. 3.58), Fig. 3.57
5Q 10 Q 5Q
AVAVAY NV ANN\—=<
pt
2 A (D § 20 Q 2A CD 6.67 Q
(a) (b)
Fig. 3.58
By current-division rule,
” 6.67
17=2x% =1.14 A(«)
5+6.67
Step III 'When the 36 V source is acting alone (Fig. 3.59)
By series—parallel reduction technique,
5Q 10Q 10 Q /
AN\ — AAMN——
20 Q —— 36V 4Q — 36V
(a) (b)

Fig. 3.59

3.15

6.67 Q
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36

I = =257A
10+4

By current-division rule,

17 =257x—22_ ~2.06 A(e)
20+5

Step IV By superposition theorem,
I=0+1"+1"==-206+1.14+2.06=1.14 A («)

" SEINIWERYR  Find the current through the 4 Qresistor in Fig. 3.60.

sa(l)  Sao (1) 24 §4Q

Fig. 3.60
r
Solution
2Q 4Q
Step I When the 5 A source is acting alone (Fig. 3.61) SA <f> §
By current-division rule,
2
I'=5x =1.67A{)
2+4 Fig. 3.61

Step II When the 2 A source is acting alone (Fig. 3.62) I
By current-division rule,

; 20Q Q 2A 40Q

2
I”=2x——=0.67A()
2+4

Step III 'When the 6 V source is acting alone (Fig. 3.63)

Applying KVL to the mesh, Fig. 3.62
21" -6-41"=0 | BV
I”=-1A) :
Step IV By superposition theorem, 2Q § D
I=I'+1"+1"=167+067-1=134A ) I

S 40

Fig. 3.63
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EXAMPLES WITH DEPENDENT SOURCES

" SEINNIENER  Find the current through the 6 Qresistor in Fig. 3.64.

| 6Q 8Q
—"VV\ AYAYAY
15V —— 3/ — 10V
Fig. 3.64

Solution 6Q 8Q
Step I When the 15 V source is acting alone (Fig 3.65) TTVVV VWV
From Fig. 3.65,

I'=1, (D) 15V ) P ar )

/ /

Meshes 1 and 2 will form a supermesh. 1 2

Writing current equation for the supermesh,
I, — 1, =3I =3I,
4L, -1, =0 ...(ii)
Applying KVL to the outer path of the supermesh,
15-61, -8, =0

61, +81, =15
Solving Eqs (ii) and (iii),
I =0.39A
I, =1.59A
I'=1L=039A(—>)

Step I When the 10 V source is acting alone (Fig 3.66)

...(iii)

From Fig. 3.66, Ny
I”"=1 ..(1)
Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh, |
;

]2—[] :31”:3[]

—10V

AL -1, =0 ...(1i)
Applying KVL to the outer path of the supermesh,
—61, -8/, +10=0
61, +81, =10

......(ii)
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Solving Eqs (ii) and (iii),
L =0.26A
I, =105 A
I"=6L=026 A (—)
Step III By superposition theorem,
I=0I"+1"=0.39+0.26=0.65A (—)

" S ETNIIEMEN  Find the current I in Fig. 3.67.

I, 5Q 1Q
—"\VV\V A%
20V —— G 30 A Y 4,
Fig. 3.67
Solution
Step I 'When the 30 A source is acting alone (Fig. 3.68) I/ 5Q 10
From Fig. 3.68, —AN——AAN
I =1, ...(1)
Meshes 1 and 2 will form a supermesh. I S0A I, A
Writing current equation for the supermesh,
I -1, =30 ...(11)
Applying KVL to the outer path of the supermesh, Fig. 3.68

—511 —1]2 —41): :0
—5[1 —[2 —4]| :0

9L +1,=0 (111)
Solving Eqs (ii) and (iii), L =3A
12 =-27A
I;=L=3A(>)
Step II When the 20 V source is acting alone (Fig. 3.69) " 50 10
Applying KVL to the mesh, —AAA A%
20517 —UY —4I7 =0
];,:2A(—>) 20V —/— * 41/

Step III By superposition theorem,

I.=1;+1I7 =34+2=5A(>)
Fig. 3.69
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" FEININIEREW  Find the current I, in Fig. 3.70.

Vi 4V,
& + —
g
10Q §
2A 2Q
5V
T
Fig. 3.70
Solution y
Step I When the 5 V source is acting alone (Fig 3.71) o i 4Vx
From the figure, Iy
V.=5-101/ 10Q §2§2
Applying KVL to the mesh,
’ ’ _ 5V
5-10 -4V _-2I,=0 T
5-107 -4 (5-10I)-2I=0 Fig. 3.71

5101/ —20 + 401 — 21/ =0

15
I =—=0.54 AT
=73 (1

Step II When the 2 A source is acting alone (Fig 3.72)
From Fig . 3.72,

Vi 4V,
&- +_
ALy
V., =-101, ...(1) 100 ; ”a ;29
Meshes 1 and 2 will form a supermesh. X L

Writing current equation for the supermesh,

IL—-1[=2 ...
20 (i1) Fig. 3.72
Applying KVL to the outer path of the supermesh,
—100] -4V, =21, =0
—107{ —4(-101{ )-21, =0

306 -2, =0 ...(iii)
Solving Eqgs (i) and (iii),
L =0.14 A(T)
I, =214 A

Step III By superposition theorem,

L=1] +1 =0.54+0.14=0.68 A (T)
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" FEINNIENEW  Determine the current through the 10 2 resistor in Fig. 3.73.

10 Q 10V,
AN - —

100 V= 5Q§Vx Q 10A

Fig. 3.73

Solution
Step I 'When the 100 V source is acting alone (Fig. 3.74) 109 y
From the figure, AN > o 10Vx

V.=5I ! +
Applying KVL to the mesh, 50 §

100 V—" Vi
100 - 107" + 10V —5I'=0 _
100 — 107 + 10(5I") = 5I'=0

I"=-2.86 A (—) Fig. 3.74
Step II When the 10 A source is acting alone (Fig. 3.75) 100 10V
From Fig. 3.75, — M\ >

Vx :5([1—[2) (1)

Applying KVL to Mesh 1, 50 §
V
10A
A I1 X I2 <f

—IO]1+10VX J\ll—lz):()
_10[l+10{5(ll_l2)}_5(11_[2)=0 -
351, — 451, = 0 .. (i)

Fig. 3.75
For Mesh 2,
I, =-10 ...(1i1)

Solving Eqs (ii) and (iii),

I, =-12.86 A

I,=-10A

I”"=1=-12.86 A (—>)
Step Il By superposition theorem,

I=0I"+1"=-286-12.86=—-1572 A (—)

" EININCEMVYA  Find the current I in the network of Fig. 3.76.

T
! /
+ 4Q
2Q§VX 5V,
- 1A
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Solution 17V 3Q
Step I When the 17 V source is acting alone (Fig. 3.77) k VWV ,:
From the figure, +
V,==2r 20 §VX N 5y,
Applying KVL to the mesh, - v
=2I'=17-3I'-5V =0

oI 17 -3 —5(-2I' =0
I'=34A(>)

Step I When the 1 A source is acting alone (Fig. 3.78)

From Fig. 3.78,
V.=-2I ..() +
. 202V,
Meshes 1 and 2 will form a supermesh. § _
Writing current equation for the supermesh,
]2—[1:1 (11)
Applying KVL to the outer path of the supermesh,
20, -3, -5V, =0
—211 —3]2 —5(—2[1) =0
8, =31, =0 ...(111)
Solving Eqs (ii) and (iii),
I1=06A
[2 = 16 A

I"=1,=16A(>)

Step III By superposition theorem,
I=T+1I"=34+16=5A(>)

" SEINIIENER  Find the voltage V,in Fig. 3.79.

1Q ] 4Q
AAAY Lt AAY
+
a1 {* V1G 5A — 20V
Fig. 3.79

Solution
Step I When the 5 A source is acting alone (Fig. 3.80)

: 10 Vi | 4Q
From Fig. 3.80,

1=l
4 a1 5A
Applying KCL at Node 1, \/
l_4 ’
hoal hs

1 4 Fig. 3.80
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-4 (EJ + W_ 5
4 4
V=20V
Step II 'When the 20 V source is acting alone (Fig. 3.81)
Applying KVL to the mesh,
41 —1-41-20=0
I1=-20A
V" =4l-1(I)=31=3(-20)=-60 V
Step III By superposition theorem,
Vi=V/+V/"=20-60=-40V

1Q vy | 4Q

4] — 20V

Fig. 3.81

" SETNIACEMEN  Find the current in the 6 2 resistor in Fig. 3.82.

1Q 2V,
AN o
V4 /
18V —— G 3A 6Q
Fig. 3.82
Solution 1Q 2V,
AV $ ,
Step I When the 18 V source is acting alone (Fig. 3.83) - V4 /
From Fig. 3.83,
8 V=_r 18V —|/— 6
Applying KVL to the mesh,
181 +2V —6I'=0
18—71-2I'-6I'=0 Fig. 3.83
Ir'=2A)
Step I When the 3 A source is acting alone (Fig. 3.84) 10 2V,
From Fig. 3.84, Vv t
V4 /
Ve=-1L=-I ...(1)
| 1 1 <f 3A 60
Meshes 1 and 2 will form a supermesh. | ,
Writing current equation for the supermesh, ! 2
I,—-1,=3 ...(11) Fig. 3.84

Applying KVL to the outerpath of the supermesh,
—1L+2V, -61,=0

-1 +2(—Il)—6[2 =0
3[1 +612 :0

...(iii)



Solving Eqs (ii) and (iii),
[1 =-2A
]2 = 1 A
I"=L=1A{)

Step II1 By superposition theorem,
L,=I+I"=2+1=3A()

" SENACREWON  Find the current I, in Fig. 3.85.

3.2 Superposition Theorem 3.23

ly a0 10/, 8Q
A ———<E S AN
120V Q 12A — 40V
Fig. 3.85
Solution ly 40 10/, 8Q
———WA—<F = AN
Step | When the 120 V source is acting alone (Fig. 3.86)
Applying KVL to the mesh, 120V =/
120-41"—-101"-81"'=0
y y y

Step I  When the 12 A source is acting alone (Fig. 3.87) | 107 8o
From Fig. 3.87, S ® ¥ - d AN/

1,”=1, ...(0)
Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,

I, -1, =12 ..(11)
Applying KVL to the outer path of the supermesh,
45, -1071,”7-81,=0
—41,-105, -8, =0

141, +81, =0
Solving Eqs (i1) and (ii1),
I} =—436A
I, =7.64 A

D'=1=-436A(—>)

Step III 'When the 40 V source is acting alone (Fig. 3.88)
Applying KVL to the mesh,

41"~ 101" ~81"" ~40 =0
40

1,/ =——=_182A (=
7 22 =)

Fig. 3.87
...(111)
" 101" 8Q
> + - A%
— 40V

403

Fig. 3.88
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Step IV By superposition theorem,
1= 1/ + Iy” + Iy”’ =545-436-182=-0.73 A (>)

"m Find the voltage V _in Fig. 3.89.
3Q

6Q 3V,
NV NV + =
+ Vi -
24 Q
18V — — 36V
5A
Fig. 3.89
Solution
Step 1 i i ig. 3. 3Q 6 Q 3Vy
ep .When the 18 V source is acting alone (Fig. 3.90) AN, AAA, -
From Fig. 3.90, + V, -
v’ =3I
Applying KVL to the mesh, 18V — D
18-31-6I-3V'=0 I
18-3/-6/-3(3)=0
I=1A .
V=3V Fig. 3.90
Step I When the 5 A source is acting alone (Fig. 3.91) 3Q 6 Q
From Fig. 3.91, A AAA
Vx" =-31 ...(1) 24 Q
Meshes 1 and 2 will form a supermesh. ) Y sy
Writing current equation for the supermesh, I 5A b
L-1,=5 ..(ii)
Applying KVL to the outer path of the supermesh, Fig. 3.91
—3[1 —612 —3V;/ =0
=31, -61, -3(3)=0
Solving Egs (i1) and (ii1),
I =-1.67A
I, =333A
Ve =31 =3(-1.67)=-5V
Step III  'When the 36 V source is acting alone (Fig. 3.92) 30 6 Q 3V,”
From the figure, R ’\/‘>/\/ ~ A NG
v =-31 )
. — 36V
Applying KVL to the mesh, |
36+3V"-6I-31=0

Fig. 3.92
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_V»,” _V”/
36+3V-6 = )—3( — =0
3 3

36+ 3V, + 2V + VY =0
V"=-6V

Step IV By superposition theorem,
V=V'+V"'+V"”=3-5-6=-8V

"m Find the voltage V in the network of Fig. 3.93.

8 Q 15Q 5Q
AA%AY AAAY AAAY
-V +

oV L G 5A §129 8V

Fig. 3.93
Solution
Step I When the 10 V source is acting alone 8Q 15Q 5Q
(Fig. 3.94) MV MV MV

From Fig. 3.94,

Vi=-8L ..() q1ov_— ) §129 D
Applying KVL to Mesh 1, I I

-10-8L-151L1-12(I;,-1,)=0
351, -121, =-10  ...(i1) Fig. 3.94
Applying KVL to Mesh 2,
—12(I, -1,)-51,-8V"=0
—127, +121; -51, —8(-81) =0

761, —-171, =0
Solving Eqs (ii) and (iii),
I1=054A
I,=24A

V' = -8, =—-8(0.54)=—4.32V

Step II When the —5 A source is acting alone
(Fig. 3.95)
From Fig. 3.95,

AVAVAY AVAVAY NV
— V” +
V=8I, (1) ) (D 5A ) § 120 ) i
Meshes 1 and 2 will form a supermesh. I b I3

Writing current equation for the supermesh,

L=, =-5 ..(i1) Fig. 3.95

8Q 15 Q 5Q

3.25

8V’

...(iii)

8V~
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Applying KVL to the outer path of the supermesh,
—81, —151, —12(I, - 13)=0
=81, —271, +121; =0 ..(1i1)
Applying KVL to Mesh 3,
—12(l3-1,)-5;-8V"=0
—1213+121, - 51, -8(-81;)=0
641, +121, —-1713 =0 (1v)
Solving Eqs (ii), (iii) and (iv),
I, =497 A
I, =997 A
I3=2574 A
V”=-81 =-8(-4.97)=-39.76 V

Step III By superposition theorem,
V=V'+V"=-432-39.76=-44.08 V

"m For the network shown in Fig. 3.96, find the voltage V.

50 Q 200 Q
AYA%AY T AA%AY
40 Q
+
1A (D V Yi — 25V
- 0.5 V1
Fig. 3.96

Solution 500 200 O
Step I When the 1 A source is acting alone (Fig. 3.97) ANA— AN
From Fig. 3.97,

v, = 2001, () . 40Q
For Mesh 1, 1A Cf vy ) Vv, )

L =1 ...(11) -, 05V, I
Applying KVL to Mesh 2, B

0.5, -40(1, - 1,)-2007, =0 _
0.5(2001,) — 401, + 401, — 2001, = 0 Fig. 3.97
406, -14017, =0 ...(1i1)

Solving Eqs (ii) and (iii),

]1 = 1 A

I, =029 A

Vo' =50 1, =2007, =0
Vo” —50(1) —200(0.29) = 0
V()’ =108 V
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Step I ' When the 25 V source is acting alone (Fig. 3.98) 50 Q 200 Q
From Fig. 3.98, © MWV Vv
Vi -2001-25=0 40 Q
B=2001+25 () v, ) L ey
Applying KVL to Mesh 1, 0.5V, |
0.5/ -4071-2001-25=0 o -
0.5(2007+25)-407-2007/-25=0 Fig. 3.98
I1=-0.09 A

Vo' =V, =2001+25=200(-0.09)+25=7V
Step III By superposition theorem,
Vo =Vy+Vy =108+7=115V

" SETWNIEWL  For the network shown in Fig. 3.99, find the voltage V.

@10A
20 40
AN TN
v
20V V, 260 ¢ =
Fig. 3.99

Solution

4Q
NMN— AAvAY
Step I When the 20 V source is acting alone (Fig.
VI
3.100) . 20V = v/ §6£2 X
From Fig. 3.100, x I 2
2

Vx, :6(11 —]2) (1)

Applying KVL to Mesh 1,

Fig. 3.100
20—2[1 —6(11 —]2) = 0
8 —61, =20 ..(11)
For Mesh 2,
I =%=L‘ )3y s,
3, -4, =0 ...(111)

Solving Eqs (i1) and (ii1),
I =571A

I, =429 A
Vi=6(I, - 1,)=6(5.71-4.29)=8.52 V
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Step II 'When the 10 A source is acting alone (Fig. 3.101) 10A
: ()
From Fig. 3.101, N,
VY =6(1 -1,) ..(1) 2Q /33 4Q
Applying KVL to Mesh 1, VWS VWV
2, -L;)-6(1) -1)=0 yr 260 ¢ Vi
8T, —61, —21; = 0 ...(ii) f g b 2
For Mesh 2, -
7 I —I
IZZV; :6( 1 2):3[1_312 Flg 3.101
3[1 —412 =0 (111)
For Mesh 3,
I;=-10 ..(1v)
Solving Eqgs (ii), (iii) and (iv),
[1 = —571 A
I,=-429 A
I;=-10 A
V.,”=6(I) —1,)=6(-5.71+4.29)=-8.52V
Step III By superposition theorem,
Ve=V.'+V,”=852-852=0
"m Calculate the current I in the network shown in Fig. 3.102.
4Q
NV
20 Q
AN ~ 3
70V = 2Q — 50V
/
AAN——<—
10 Q
Fig. 3.102
Solution
Step I 'When the 70 V source is acting alone (Fig. 3.103) I 4Q
From Fig. 3.103, > Vv
I'=1, () 200 11) 21,
Applying KVL to Mesh 1, NN\ -+
—4[1—2[1—20([1—12)20 20
.. 70V —
26]1 - 20]2 =0 ...(11) 12 IS
Applying KVL to Mesh 2, /\/\/\,—<I—
70—20(1> — 1) = 2(I> — I3) =0 100
=201, +221, =213 =70 ...(1ii) Fig. 3.103
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Applying KVL to Mesh 3,
—2(13 —[2)+2[1 -10/;=0
2[]+2I2—12]3 =0 (IV)
Solving Egs (i1), (ii1) and (iv),
I, =894 A
I,=11.62A
I3 =343A
I"'=1;=343A(«)
Step II 'When the 50 V source is acting alone (Fig. 3.104) I, 40Q
From Fig. 3.104, > A
21,
I”"=1 ..(G 20 Q ID
3 (1) MA— 3
Applying KVL to Mesh 1,
3 2Q — 50V
—41, =21 -20(1, —1,)=0 ; I
. 2 3
261, =201, =0 ...(i1) A A
Applying KVL to Mesh 2, 1001
—20(172 - [1) —2(1’2 - [3) = O Fig. 3.104
—200,+221, -215=0 ...(111)
Applying KVL to Mesh 3,
—2([3 —[2)+2]1 +50-10/5=0
20 +21, —1213 = =50 ...(1v)

Solving Eqgs (i1), (ii1), and (iv),
I, =1.06 A
I, =138A
I,=457A
1"=1,=457A (<)
Step III By superposition theorem,
I=1I"+1"=343+457=8A («)

" SEINNIEWIW  Find the voltage V,in the network of Fig. 3.105.

5Q ‘|‘V 1Q
AVAVAY; |I AVAVAY,

+
+\ V
10V — <D1A V0§2s2 D=

Fig. 3.105
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Solution
Step I When the 10 V source is acting alone
(Fig. 3.106)
Applying KCL at the node,
, W
’ ’ V -
V() 10 +ﬁ+ 2 _ 0
5 2 1
I 1 1
—+—+—=|Vy=2
5 2 2
Vo=1.67V

Step I When the 1A current source is acting
alone (Fig. 3.107)

Applying KCL at the node,
VO”
Vll_ v
V” ” 0
L1+ 2 di + 2
5 2 1
1 1 1
—+—+—=|Vy=-1
5 2 2
Vy=-0.83V
Step III When the 4 V source is acting alone
(Fig. 3.108)
Applying KCL at the node,
V()///
- VO/// 4"
L T
5 2
1 1
S V”’— 4
(5 2" ) "
Vo”’=3.33V

Step IV By superposition theorem,

5Q 1Q
AYAYAY AVAAY
+ Vo
— voéz Q s
Fig. 3.106
50 10
NV ® NV
+ V ”
<¢ 1A We2a ’ 5
Fig. 3.107
50 Vooqg
AN —— W\
+ V’//
V ”r 2 %
Fig. 3.108

Vo=Vo+Vi+Vy"=1.67-0.83+3.33=4.17V

EEN| THEVENIN'S THEOREM

It states that ‘any two terminals of a network can be replaced by an equivalent voltage source and an
equivalent series resistance. The voltage source is the voltage across the two terminals with load, if any,
removed. The series resistance is the resistance of the network measured between two terminals with load
removed and constant voltage source being replaced by its internal resistance (or if it is not given with
zero resistance, i.e., short circuit) and constant current source replaced by infinite resistance, i.e., open

circuit.’
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o | | Bm
| | '
| : I [ : I
: Network : R, : Vi, —— : R,
| |
| : | :
o i S — |
(a) (b)
Fig. 3.109 Network illustrating Thevenin’s theorem
Explanation Consider a simple network as shown in Fig. 3.110.
R1 RS
AYAVAY NV A
|V A— § Ry R,
B
Fig. 3.110 Network
Ry R,
For finding load current through R, first remove the load MV VMAV—0A
resistor R, from the network and calculate open circuit voltage
V., across points 4 and B as shown in Fig. 3.111. v— § R, Ve,
R
VTh = 2 —
R1 + Rz OB
For finding series resistance Rry,, replace the voltage source Fig. 3.111 Calculation of V,
by a short circuit and calculate resistance between points 4 and R, Ry
B as shown in Fig. 3.112. AN AN oA
_ RR,
RTh _R3+R1+R2 §R2 <—RTh
Thevenin’s equivalent network is shown in Fig. 3.113. 0B
[ = tm Fig. 3.112 Calculation of R,,
RTh + RL
RTh
If the network contains both independent and dependent VWV A
sources, Thevenin’s resistance Ryy, is calculated as,
Ve L
R — VTh h ) RL
Th =~ |
Iy L
where [y is the short-circuit current which would flow in a B
short circuit placed across the terminals 4 and B. Dependent Fig 3.113 Thevenin’s equivalent

sources are active at all times. They have zero values only when
the control voltage or current is zero. Ry, may be negative in

network
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some cases which indicates negative resistance region of the device, i.e., as voltage increases, current
decreases in the region and vice-versa.
If the network contains only dependent sources then

VTh = 0
[N = 0
For finding Ry, in such a network, a known voltage V' is applied across the terminals 4 and B and current

is calculated through the path AB.

y
Ry =—
™ =7

or a known current source / is connected across the AN oA
terminals 4 and B and voltage is calculated across the
terminals 4 and B.

v
Rop = —
Th Ji

. . . °B
Thevenin’s equivalent network for such a network is

shown in Fig. 3.114. Fig. 3.114 Thevenin’s equivalent network
Steps to be Followed in Thevenin’s Theorem

1. Remove the load resistance R, .

Find the open circuit voltage V., across points 4 and B.

Find the resistance R, as seen from points 4 and B.

Replace the network by a voltage source V., in series with resistance R, .
Find the current through R, using Ohm’s law.

nohk v

__Jm
RTh +RL

" SEINNIEWIE  Find the current through the 2 Qresistor in Fig. 3.115.

I

40V — 10 Q —_— 10V

Solution 50 20V A B
|
Step I Calculation of V., (Fig. 3.116) + =

Applying KVL to the mesh,
40-51-20—-101 =0 AV /D ;109 oV

1571 =20
I=133A
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3.33

Writing the V., equation, 5Q A B
AVAVAY 0 R, ©
10 =V +10=0 v
Ven =107 +10 =10(1.33)+10 = 23.33 V ;109
Step Il  Calculation of R, (Fig. 3.117)
Fig. 3.117
R, =5110=3.33Q 3.33Q
NV A
Step III  Calculation of /, (Fig. 3.118)
23.33V —|— ) 2Q
/
L= 233 _ 4384 -
3.33+2 B
Fig. 3.118
" ENNCEWER  Find the current through the 8 Qresistor in Fig. 3.119.
5Q 10 Q
NV NV
250V /| § 5Q ; 8Q
(l
'
75V
Fig. 3.119
5Q 10 Q
. et VAYAY NV o A
Solution - +
+
Step | Calculation of V., (Fig. 3.120) 250\ - § 50 Vi
I = 230 =25A N =
5+5 1] o B
75V
Writing the V.. equation,
s ™ & Fig. 3.120
250 -5 -V —75=0 5Q 10Q
NV NV oA
Vin =175-51 =175-5(25)=50 V
Step II Calculation of R, (Fig. 3.121) § SQ ~— An,
R =(5]15+10=12.5Q 0B

Fig. 3.121
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Step III  Calculation of /, (Fig. 3.122)

50

= =244 A
12.5+8

I

50V

Fig. 3.122

" SEINNIEWLER  Find the current through the 2 Q2 resistor connected between terminals A and B in

the Fig. 3.123.

2Q 1Q 3Q
NV NNV AVAYAY
A
2V—/— § 12Q 2Q — 4V
B
Fig. 3.123
Solution
Step I Calculation of V_, (Fig. 3.124) /\2/5/2\/ /\1/\5/2\, /3/3\/
Applying KVL to Mesh 1, - L + Al -
141, 121, =2 ..(0) I 4 lo BT_
Applying KVL to Mesh 2,
_12(12—[1)—1[2—3]2—4:() Flg. 3.124
—12[1+16]2 :—4 (ll)
Solving Eqs (1) and (i1),
3 20 10 30
I =-04A A WA T
Writing the V., equation, A
12Q R
Vi =31, —4 =0 § "

Viw = 4430, = 4+3(~0.4)= 2.8V 59

Step II Calculation of R, (Fig. 3.125) Fig. 3.125
143 Q

Rn =[(2][12)+1]]]3=1.43 Q AN A

Step III ~ Calculation of /, (Fig. 3.126) gy —— ) 50
l}
=22 _osa :
1.43+2 B
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" FETNIIEIEIW  Find the current through the 10 Qresistor in Fig. 3.127.

6 Q 2Q
AYAVAY AYAVAY
10V —/— §1Q ;39 §1OQ
1l
'
20V
Fig. 3.127
. 6Q 20
Solution AN AN N oA
Step I Calculation of ¥, (Fig. 3.128) L T *
Applying KVL to Mesh 1, S *
vV —/— 1Q 3Q V-
10=61, —I(I, — I5) = 0 10 , § , § i
(1) 1 -t 2 -
71, -1, =10 5
Applying KVL to Mesh 2, 20V
-, -6L)-21,-31,=0
(I -h)-2I, -3, (i) Fig. 3.128
Solving Egs (i) and (ii), AA'AY% MV oA
I, =024 A ...(ii)
Writing the V., equation, § 1Q § 3Q <— R
3[2 _Vl‘h -20=0
Vin =31, —20=3(0.24)-20=-19.28 V °B
=19.28 V (terminal B is positive w.r.t 4) Fig. 3.129
. . 1.47 Q
Step I  Calculation of R, (Fig. 3.129) AN, A
R =[(6]|)+2]]|3=1.47Q L
Step III Calculation of /, (Fig. 3.130) 1928V — U 10Q
19.28
=——— =168 A(T
F 147410 () B
Fig. 3.130
" Example 3.31 Find the current through the 10 Qresistor in Fig. 3.131.
10 Q 30 Q
AYAAY NN

10 A D

;59 §20§2 . 100V

Fig. 3.131
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Solution

Step I Calculation of V., (Fig. 3.132)
For Mesh 1,

10A D /) +§59 20 O

+0 >
S
=
10 m

~

7 =10 — 100V
1 l
Applying KVL to Mesh 2,
100—307, —207, =0 Fig. 3.132
RTh
L=2A A ¢ B 30 Q
—© o AAAY
Writing the V., equation,
Sll_VI‘h_ZOIZ:O SQ§ gzog
Vin =511 =201, =5(10)-20(2) =10V
Step I Calculation of R, (Fig. 3.133) Fig. 3.133
17Q
R, =5+(201]]30)=17Q VMV A
Step II'  Calculation of I, (Fig. 3.134) 10V = D 100
I
10
I; = =037A
17410 B
Fig. 3.134
"m Find the current through the 40 Qresistor in Fig. 3.135.
50 Q 10 Q
AA%AY AA%AY
25V — ;209 §4OQ — 10V §SOQ
Fig. 3.135
Solution
50 Q 10 Q
Step I Calculation of V, (Fig. AN~ AAA—
3.136) l
Since the 20 € resistor is connected +OA 300
across the 25 V source, the resistor 25V — § 20 Q / Vn — 10V
becomes redundant. - T B

Vzog :ZSV

Fig. 3.136
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Applying KVL to the mesh,
25-507/-10/+10=0
I=0.58A
Writing the V., equation,
Vin —101+10=0
Vi =10(1)-10=10(0.58)-10=—-4.2V
=4.2 V(terminal B is positive w.r.t A)
Step Il  Calculation of R, (Fig. 3.137)
50 Q 10Q
NN AVaaY,
L, L
gzog R §309 5og§ Rry, §1osz
TB TB
(@) (b)
Fig. 3.137 8.33 0
AYAVAY A
R, =501/10=8.33Q I,
42V — U 40 Q
Step III  Calculation of /, (Fig. 3.138)
4.2 B
I, =—————=0.09 A(T)
8.33+40 Fig. 3.138

"m Find the current through the 10 2 resistor in Fig. 3.139.

60 2V 100 50
AN A AN
50 V—— §4Q ;159 ——20V
Fig. 3.139
Solution 6Q 2v. 5 50
Step I Calculation of V., (Fig. VA II o Vo A% %
3.140) . .
= s 50V ) §49 §159< 20V
6+4 l _ _ I
12: 20 =1
5+15

Fig. 3.140

3.37
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Writing the V., equation,
4L +2-V, =151, =0
Vin =46 +2-151, =4(5)+2-15(1)=7V

Step I  Calculation of R, (Fig. 3.141)
RTh

6Q A B 5Q
A o l o A
R =(6]14)+(5]]115)=6.15Q
m = (6114)+(51[15) San S50
Fig. 3.141
Step III  Calculation of 7, (Fig. 3.142)
6.15Q
NV A
7 1
[ =——=043A 7V 10Q
6.15+10 /
L
B
Fig. 3.142

" SEINIIEIET M  Determine the current through the 24 2 resistor in Fig. 3.143.

30 Q 200
220V —/ AVAVAY,
24 Q
50 Q 5Q
Fig. 3.143
Solution
Step I Calculation of V., (Fig. 3.144)
| = 220 _ 275A
30+50
220V —
2 = 220 _ 88 A
20+5
Writing the V., equation,

Van +301, =201, =0
Van = 201, — 301, = 20(8.8) —30(2.75) = 93.5 V Fig. 3.144
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Step I  Calculation of R, (Fig. 3.145)

Fig. 3.145

Redrawing the circuit (Fig. 3.146),
30 Q

R, = (3011 50)+(2015)=22.75Q A B

50 Q 5Q

Step III  Calculation of /, (Fig. 3.147)

935V —— 240
I, = 93.5 oA )
22.75+24 I

Fig. 3.147

"m Find the current through the 3 L2 resistor in Fig. 3.148.

4 Q

5Q

2L
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Solution
Step I Calculation of V., (Fig. 3.149)
Applying KVL to Mesh 1,

5021, — (I, — 1) —8(I, = I) =0

117; =91, =50 (1)
Applying KVL to Mesh 2,
—41, =51, —8(I, - I))-1(I, - 1) =0 .
91, +181, = 0 (1)
Solving Egs (i) and (ii),
I, =7.69 A
I, =385A

Writing the V., equation,
Vi =51, =8(1, —1;) =0

Vin =51, +8(1, — 1) = 5(3.85) + 8(3.85-7.
=11.47 V(the terminal B is positive w.r.t. 4)

Step I  Calculation of R, (Fig. 3.150)

69)=-1147V

Fig. 3.150
Redrawing the network (Fig. 3.151),

A

4Q 50
NNV

2Q
1Q 8Q

B

Fig. 3.151

Fig. 3.149
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Converting the upper delta into equivalent star network (Fig. 3.152),

4%2 A
= X2 _073Q
4+2+5
4 Ry
=P _e0
4+2+5
2 R
= 2X2 0910 ‘ Rs
4+2+5
1Q 8Q
B
Fig. 3.152 Fig. 3.153

Simplifying the network (Fig. 3.153),
Ry =1.82+(1.73]|8.91) =3.27 Q

A

1.82 Q

B
Fig. 3.154
Step III  Calculation of /, (Fig. 3.155)
11.47 327 Q
I = =1.83A(T) AN A
3.27+3
11.47V — <:- 30
IL
B

Fig. 3.155
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" SEINIIEIEW  Find the current through the 20 82 resistor in Fig. 3.156.

120V
[
II
BV § 20 Q § 15Q
NN AVAYAY
10 Q 5Q
[\
AA%AY !
5Q 20V
Fig. 3.156
Solution 12|(|’V
Step I Calculation of V., (Fig. 3.157) i I
Applying KVL to Mesh 1, +0A +
AV | Vh § 15 Q
45-120—-150 =5(I, - I,)—-10(I; - 1,) =0 0 1~o3 R
.3 T
301, —151, =75 I'\/\/\/t I'\/\/\/t
Applying KVL to Mesh 2, 10 Q 5Q
20-51, =10(L, —1})-5(1, —1;)=0 (ii) b
..(ii
~151, +201, = 20 —_a I
. . .. 5Q 20V
Solving Eqgs (1) and (i1),
I =-32A Fig. 3.157
I,=-14A

Writing the V., equation,

45_VTh —10(]1 —[2) = O
Vin = 45-10(1, = 1,) = 45-10[-3.2 - (-1.4)] =63 V

Step Il  Calculation of R, (Fig. 3.158)

Rt § 15Q

Fig. 3.158
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Converting the delta formed by resistors of

10 Q, 5 Q and 5 Q into an equivalent star J) A
network (Fig. 3.159), B
10x5
fi= 20 =230 Ay §159
10x5
R, = =25Q
2 20 R2 Rs
Ry = 5%5 1.25Q
20
Simplifying the network (Fig. 3.160), Fig. 3.159 Fig. 3.160
Ry =(16.25((2.5)+2.5=4.67Q lA
RTh
250 § B § 16.25 Q)
25Q
Fig. 3.161
Step III  Calculation of /,
63 4.67 Q
I, =—=2.55A NV A
4.67+20
63V — ) 20 Q
IL
B
Fig. 3.162

" SETWNIEIETM  Find the current through the 3 2 resistor in Fig. 3.163.
12 Q

6A (D § 60 § 30
T 42V

Fig. 3.163
Solution oA
Step I Calculation of V., (Fig. 3.164) +
For Mesh 1,
L=6 L@ A () Vi
Applying KVL to Mesh 2,
42-12(1, - 1))—-61, =0 oB

..(ii)
121, +181, = 42
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Solving Eqs (i) and (ii), oA
1, =633 A
120 § § 6Q Ry,
Writing the V., equation, <—|
Vin =61, =38V oB
Step Il Calculation of R, (Fig. 3.165) Fig. 3.165
40
RTh:6||12:4Q AN/ A
Step III  Calculation of /, (Fig. 3.166) a8y - > 30
Iy
38
I, =——=543A
a3 B
Fig. 3.166
" SETNIIEIE W  Find the current through the 30 2 resistor in Fig. 3.167.
15Q 60 Q 30 Q
NV NV NV
150 V —— Q 13A §4OQ —— 50V
Fig. 3.167
Solution
Step I Calculation of V., (Fig. 3.168) 15 Q 60 Q A B
Meshes 1 and 2 form a supermesh. T VVVZ V= o Vrn 00—
Writing current equation for supermesh, +
L-L=13 ..() 150V— D G 13A ) ;409 —— 50V
Writing voltage equation for supermesh, h L -
150-151, —601, =407, =0
157, +1007, =150 ...(ii) Fig. 3.168
Solving Eqgs (i) and (ii),
I, =-10A
L=3A 150 60 Q RT“B
Writing the V., equation, AYA%AY AYAYAY o—
401, =V, —=50=0 §4OQ
Vin =401, —=50=40(3)-50=70 V
Step I  Calculation of R, (Fig. 3.169)
Fig. 3.169

Ry, = 751140 =26.09 Q
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Step III  Calculation of /, (Fig. 3.170) 26.09 Q
AYAAY A
70V —/— 30 Q
e s D
26.09+30 I
B
Fig. 3.170
" SETNNIEIELER  Find the current through the 20 2 resistor in Fig. 3.171.
10Q
NV
5A<D §59 §209 — 100V
Fig. 3.171
Solution
Step I Calculation of V., (Fig. 3.172)
Vop =100V 100
AVAVAY
+OA
5A 5Q Vtn — 100V
® g
Fig. 3.172
Step II Calculation of Ry, (Fig.3.173)
10 Q
NV
L, L
5Q § Ry 5Q § Rt
[ [
(a) (b)
Fig. 3.173
RTh = 0
Step III Calculation of /; (Fig.3.174)
1 A
L= ﬂ = 5 A
20
100V —/— ) 20 Q
I
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" SEINIEN- D Find the current through the 20 82 resistor in Fig. 3.175.

10 Q 20Q 5Q
NNV NNV NV

10V — §4Q §BQ G 2A

Fig. 3.175
Solution
Step I Calculation of V7, (Fig. 3.176) 10Q A B 5Q
A% ?r Vo VAV
| hd
I = 0 _ 0.71 A + +
10+4 e ‘0 80
I,=2A ovE § § / (})2a
1 — — 2
Writing the Vy, equation,
45 =V +81, =0 Fig. 3.176
Vin =4(0.71)+8(2) =18.84 V
Step II Calculation of Ry, (Fig. 3.177).
10Q Firn 5Q Firn
A 5 l 8 A — 3 l 6

o
4Q§ §SQ 2.86Q§ §SQ
0

(a) (b)

Fig. 3.177
Ry, =10.86 Q
Step III Calculation of /; (Fig. 3.178)
10.86 Q
AVAVAY A
18.84V — 20 Q
18.84
10.86+20 L

Fig. 3.178
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" SETWNIEN I  Find the current through the 5 2 resistor in Fig. 3.179.

10 Q 50V 2Q 50V
AN —A I
100V = §5Q §2Q §39
Fig. 3.179

Solution
Step I Calculation of V', (Fig. 3.180)
Applying KVL to Mesh 1,

100—10[1+50—2[1 —2(]1 —]2):0

!
141, —-21, =150 (1)
Applying KVL to Mesh 2,
—2([2—[1)+50—3[2 =0 () 10 Q 50|V 2Q 50|V
L1 | |
21, + 51, = 50 PV l YW\ |
Solving Egs (i) and (ii), AV * +1- +
I, =12.88A 100V — L ;29 §SQ
! Bo-— — |+ 12 —
I, =1515A T
Writing the Vyy, equation,
Fig. 3.180

100-10[1 _VTh = 0
Vin =100-10(12.88) = -28.8 V
= 28.8 V(terminal B is positive w.r.t. A)

Step II Calculation of Ry, (Fig. 3.181)
10Q 2Q 10Q 2Q

10Q 3.2Q

Rry, =10]]32=242Q
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Step III Calculation of I; (Fig. 3.182 242 Q
ep alculation of 7; (Fig ) AN, h
28.8
I, = =388A (T 5 1 I
24245 ssv— (A4 50
B
Fig. 3.182
" SEINNIER Y  Find the current through the 10 2 resister in Fig. 3.183.
10Q
AVAVAY
2Q 2Q
NV AVAVAY
15V — 10 § 10
T 0V
NV
1Q
Fig. 3.183
Solution é\ y lg
. . Th
Step I Calculation of V., (Fig. 3.183) + -
Applying KVL to Mesh 1, 2Q 2Q
VWV rndVA%A%m
—15-205,-1(I; - 1,)-10-1I; =0 - T +
..(1) 15y 1Q
AL -1, = 25 = > ;m
Applying KVL to Mesh 2, h L N
10—, —,)=21,—11, =0 - AN T
(il
-1, +41, =10 1Q
Solving Egs (1) and (i1), Fig. 3.184
[1 = —6A
IL=1A

Writing the V., equation,

Vi +21,+21, =0

Vi = 21, + 21, = 2(=6)+2(1) = =10V

=10 V(the terminal Bis positive w.r.t. 4)



Step I  Calculation of R, (Fig. 3.185)

3.3 Thevenin’s Theorem 3.49

1o

—————0 Ry 00—
A B
20 20
AVAVAY AVAVAY
§1Q
AVAVAY
1Q

Fig. 3.185

Converting the star network formed by resistors of 2 €2,2Q and 1 Q into an equivalent delta network

(Fig. 3.186),
R :2+2+¥:8§2

R2:2+1+%:4Q

—————— 0O RThO—
B

2Q 2Q
AV A
§1Q

S1a

Ry=2+1+ % =4Q
NNV
1Q
Fig. 3.186
Simplifying the network (Fig. 3.187),
Rrn
O RTh O A ¢ B
A B
| oo
AYAYAY
8 Q
NN\
NV NNN—
4Q 4 Q 0.8 Q 0.8 Q
(b)
RTh
—O o—
A AAN—] A B
1Q 1Q 1.33 Q
(a) AYAYAY
(©)
Fig. 3.187

Ry =1.33Q
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Step III Calculation of 7; (Fig. 3.188)

1.33Q
AVAVAY A
I —L—O&%A(T) 10V — & 10 Q
FT13t10 T U/
B
Fig. 3.188
" ETNCER XM  Find the current through the 1 2 resistor in Fig. 3.189.
1A
>
2Q 3Q
NV AVAVAY
4v =/ 10 (f -
Fig. 3.189
Solution
Step I  Calculation of V., (Fig. 3.190)
1A
>
_20 ,ZD 30,
PN vW
AO+
4v =
V-
I Th (f 3A
BT_ O O
2Q 3Q
Fig. 3.190

Writing the current equations for Meshes 1 and 2,

11:—3
I, =1

Writing the V., equation,
4—2([] _12)_VTh =0

Vin =4-2(I — I,) = 4—2(-4)= 12V

Step I  Calculation of R, (Fig. 3.191)
RTh = 2 Q
Step III Calculation of /; (Fig.3.192)

12

I, =—=
Lm0

=4A

Fig. 3.191
20
NV A
12V —|— ) 1Q
Iy
B




2Q

1Q

3.3 Thevenin’s Theorem 3.51

" SETWNIENTW  Find the current through the 3 2 resistor in Fig. 3.193.

NNV

NNV

10V == §29 Q 10A

§39

Fig. 3.193
Solution
Step I  Calculation of V., (Fig. 3.194)
2Q 1Q
AVAVAY NV ° A
10V — gzg Q 10 A Vin
o B
Fig. 3.194
By source transformation (Fig. 3.195),
2Q 1Q
AVAVAY NV 0 A
+ - +
2Q
10V — B V1h
I
20V
T 5B
Fig. 3.195
2Q 1Q
Applying KVL to the mesh, AYA%AY AA%AY oA
10-27-27-20=0
I1=-25A
O B
Writing the V., equation,
10— 27—V = 0 Fig. 3.196
Vin =10=21=10-2(-2.5)=15V 2Q
NV A
Step I  Calculation of R, (Fig. 3.196)
R =(2]|2)+1=1+1=2Q 15V — —:> 30
1
Step III  Calculation of I, (Fig. 3.197) ‘
B

1
—5—3A

L7953
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EXAMPLES WITH DEPENDENT SOURCES

" SEINNCRERCW  Obtain the Thevenin equivalent network for the given network of Fig. 3.198 at

terminals A and B.

0A
I1
4Q T 2
8V
T OB
Fig. 3.198
Solution
Step I Calculation of V., (Fig. 3.199) oA
From Fig. 3.199, l *
I =-21, 40 1 el Ve
3]1 = 0
8V
]] = O T 5 B
Writing the V., equation,
Fig. 3.199
8—0—Vrm =0
VTh =8V

Step II  Calculation of 7, (Fig. 3.200),

Meshes 1 and 2 will form a supermesh. I A
Writing current equation for the supermesh, 10
]2-[1:2]1 ) 2I1 ) IN
I I
(1) 8V
L 5

3[1—[2:0

Applying KVL to the outer path of the supermesh,

8—41,=0 Fig. 3.200
I =2 ...(ii)
Solving Eqs (i) and (i1),
L=6A 1.330Q
Iy=1,=6A VWV oA
Step III  Calculation of R, gV ——
|12 8
Rpp=—2=>=1330Q
Iy 6 0B

Step IV Thevenin’s Equivalent Network (Fig. 3.201) Fig. 3.201
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" SEINNEN W Find Thevenin’s equivalent network of Fig. 3.202.

2Q 3Q
NV NV 0A
+
4V — ¢ 0.1V, Vy
oB
Fig. 3.202
Solution 2Q 3Q
Step I Calculation of V., (Fig. 3.203) ¥ VVVZ A 2A
Vi =V 4V —=— 0.1V, V,= Vqp
I, =-0.1V, I
Writing the V., equation, °B
Fig. 3.203
4-25 -V, =0 00 30
4-2=0.1V,) =V, =0 VWV V=204
V.=5V
Ve=Vm =5V —B
. ) Fig. 3.204
Step I  Calculation of /,, (Fig. 3.204)
F Fig. 3.204 20Q 3Q
omre ’ AN AN A
V=0
The dependent source 0.1 ¥ _depends on the controlling AV — In
variable V. When V_= 0, the dependent source vanishes, i.c.,
0.17 = 0 as shown in Fig. 3.205. 5
4 .
Iy=——=08A Fig. 3.205
2+3
6.25 Q
Step III  Calculation of R, A2 OA
RTh_ﬁzizazsg 5V —
Iy 08
Step IV Thevenin’s Equivalent Network (Fig. 3.206) °B

Fig. 3.206
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" SEIUNIERIM  Obtain the Thevenin equivalent network of Fig. 3.207 for the terminals A and B.

V, 1Q 4v,
A
2Q
2A
2V
L 0B
Fig. 3.207

Solution

Step I  Calculation of V., (Fig. 3.208)
From Fig. 3.208,

2-20-V, =0
V,=2-21
For Mesh 1,
I =-2A
V,=2-2(-2)=6V L 5B
Writing the V., equation,
220 —0+4V, —Vr, =0 Fig. 3.208
2-2(-2)—-0+4(6)- V1, =0
Vin =30V

Step I  Calculation of /,, (Fig. 3.209)
From Fig. 3.209,

Vx:2_2[1 (l)
Meshes 1 and 2 will form a supermesh,
Writing current equation for the supermesh
[2—11:2 (ll)
Applying KVL to the outer path of the supermesh,
2-2[1 —1[2 +4Vx = 0
2-2L—1,+4(2-21)=0 ...(1i1)
100, +7, =10

Solving Eqs (i1) and (ii1),
I, =073A 10.98 Q
I, =273A VWV A
In=1,=273A
Step III  Calculation of R, 30V —

rmo_ 30 080
IN 273 o B

Th

Step IV Thevenin’s Equivalent Network (Fig. 3.210) Fig. 3.210
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" FEINNER W Find the Thevenin equivalent network of Fig. 3.211 for the terminals A and B.

8, 1Q
—< P> —oa
I1
10 Q
§ 10Q
5V
L o5
Fig. 3.211
Solution 8, 10
Step I Calculation of ¥, (Fig. 3.212) —< > A4
Applying KVL to the mesh, h
10 Q
5107, =101, = 0 §1og Vi
L===025A 5V T B
20 0B
Writing the V., equation, Fig. 3.212
5-105+84L -0V, =0
Vip =5-21,=5-2(025)=4.5V
Step I1 Calculation of /, (Fig. 3.213) 8L 1Q
Applying KVL to Mesh 1, <t A
/
5-105, =10(f, - 1,)=0 100 N
(1) 100
20[1 - 10]2 =5 | |
1 2
Applying KVL to Mesh 2, 5V
B
—10([2—[1)+8[1—112:0 ()
(il .
187, —111, =0 Fig. 3.213
Solving Eqs (i) and (i1),
I, =1375A
I, =225A
2Q
In=1,=225A AN, oA
Step III  Calculation of R,
45V —
o = Vm _ 45 _ 20
Iy 225
o B

Step IV Thevenin’s Equivalent Network (Fig. 3.214)

Fig. 3.214
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" Example 3.49 WgiTi V., and R between terminals A and B of the network shown in Fig. 3.215 .

1Q 2Q I
AVAYAY NNN—>—0A

12V— T 21, §1Q

OB
Fig. 3.215
1Q 2Q
Solution AN AN 2A
Step I  Calculation of V., (Fig. 3.216)
1,=0 12V—— §1Q Vi,
The dependent source 2/ depends on the controlling variable B
I.When =0, the dependent source vanishes, i.e., 2/, =0 as °B
Writing the V., equation,
1
Vih =12X——=6V
1+1
Step Il Calculation of 7, (Fig. 3.217) 1\1/\?\/ Vi /\5\5/1\/ x p
From Fig. 3.217, g
"
Ix=31 12V— 21, §1Q In
Applying KCL at Node 1,
B
n-12 . n n
! 1 +T‘+?1=21x Fig. 3.217
n+n +ﬁ—12:2(5)
2 2
=8V
o8
Iy=—=—=4A
AT

Step III  Calculation of R,

" SEINI IR Obtain the Thevenin equivalent network of Fig. 3.218 for the given network at

terminals a and b .



3.3 Thevenin’s Theorem 3.57

30 V, 4Q 5V,

Ob

Fig. 3.218

<
N
o)
&)
=

Solution 3Q

ANA——AN——<F >—o0a
Step I Calculation of ¥, (Fig. 3.219) "
2A Cf) 20

Applying KCL at Node x,
Vi

2=
2

V=4V °b
Writing the Vin equation, Fig. 3.219

Vin =V, =5V, =—4V,
=-16V (the terminal ais negative w.r.t. b) 392 Vx 49 2 Vx a

Step Il Calculation of /,, (Fig. 3.220) I
Applying KCL at Node x, 2A <f> 50
Vr Vx -5 Vx
+ _—
2 4
Vi _
2‘7_Vx T Fig. 3.220
V,=-4V 40

_ NV oa
b=l an

Step III  Calculation of R,

RThz@:_—m:—‘lQ
IN 4 O b

2=

-16V —

Step IV Thevenin’s Equivalent Network (Fig. 3.221) Fig. 3.221

"m Obtain the Thevenin equivalent network of Fig. 3.222 for the given network.

30Q 150V 400
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Solution
Step I Calculation of V,, (Fig. 3.223) 30 Q 15|0 Vio10a
From Fig. 3.223 Ao Vv |V
Vx = VTh + N\ 1
Applying KCL at the node, Vin 5A <¢> Vy ; 15Q =V
] ] _
Ve —=150—=V, B
N L Y ) Bo
10 15
V.=175V Fig. 3.223
Vin =75V 0 150V 400
A AN—¢ | —AAN
Step I  Calculation of /,, (Fig. 3.224)
Applying KCL at Node x, '\ 1
1 In 5A § 15Q 7V
V V,-150—-=V, =
psexp 3
30 15 10 B
£+&+&—£—15—5 i
30 1510 30 Fig. 3.224
V. =60V 37.5Q
AAAY OA
Ve 60
30 30 1
Step III  Calculation of R, [EANE
Vin 75
Rpp=—=—=375Q
Th [N 2 o) B
Step IV Thevenin’s Equivalent Network (Fig. 3.225) Fig. 3.225

Find the Thevenin’s equivalent network of the network to the left of A-B in the
Fig. 3.226.

} o A

1A<D 5Q §109

o B

Fig. 3.226

Solution I, +
Step I Calculation of V., (Fig. 3.227)

. +
From Fig. 3.227, 1A (f) 5Q § 10Q Vo,
[XZII_IZ .(1) I1 12 -

For Mesh 1,

=1 ...(ii) °B
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Applying KVL to Mesh 2,
=5(1, - 1,)-101, =101, =0
=5(I, - I,)-10(I; -1,)-101, =0

5L+51,=0 ...(111)
Solving Egs (i1) and (ii1),
L =1A
I, =-1A

IL,=L-LL=1-(-1)=2A
Writing the V., equation,
10/, -10-V1, =0
10(=D)-10-Vm,=0
VTh =20V

Step I  Calculation of /,, (Fig. 3.228) 10 I, 10V
From Fig. 3.228, i |
[x:[l_IZ (1)

For Mesh 1, §
.. 1A 5Q 10 Q /
I =1 ...(ii) <f> I1> /2> 13) N

Applying KVL to Mesh 2,
=5(I, —1,)-101, —10(I, = I3) =0
~5(I, —I,)—10(I, = I,) —10(I, = I3) = 0 Fig. 3.228

=51, =51, +1015 =0 ...(111)
Applying KVL to Mesh 3,
-10(/5-1,)-10=0
107, —1075 =10 ...(1v)
Solving Eqs (ii), (iii) and (iv),
II1=1A -20Q
I, =3A
I3=2A
In=01=2A

20V —

Step III  Calculation of R, oB

-2 .
Ry =229 100 Fig. 3.229
Iy 2

Step IV Thevenin’s Equivalent Network (Fig. 3.229)

Find Thevenin’s equivalent network at terminals A and B in the network of
Fig. 3.230.
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2Q 4Q
AA%AY AYA%AY 0A
+
4V, V, §5 Q
o B
Fig. 3.230
Solution
Since the network does not contain any independent source,
Vi =0 20 4Q
AAAY AA%AY A
IN = 0
But the R can be calculated by applying a known /A "
voltage source of 1 V at the terminals 4 and B as shown  4Vx 4 > Vi §5 Q 1V
in Fig. 3.231. h - lo I
Vo1
Rpp = —=— B
™=
From Fig. 3.231, Fig. 3.231
Vx :5([1—12) (l)
Applying KVL to Mesh 1,
—4V, =21, =5(I, = 1>,) =0
—4[5(1, - I, ]|-21, =55 +51, =0
271, +251, =0 ..(ii)
Applying KVL to Mesh 2,
—5([2 —[])—412 —1 = 0
5[1—9[2 =1 (111)
Solving Eqs (ii) and (iii),
I,=-021A cA
I,=-023A
. . § 435Q
Hence, current supplied by voltage source of 1 V is 0.23 A.
1
Ry =——=435Q B
™7 023 °
Hence, Thevenin’s equivalent network is shown in Fig. 3.232. Fig. 3.232

" SETNT R W Find the current in the 9 2 resistor in Fig. 3.233.

4Q

20V

Fig. 3.233
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Solution 61,
Step I Calculation of V., (Fig. 3.234) ~ oA
Applying KVL to the mesh, x "
4 Q +
20-41,+61,-61,=0 60 Vi,
I,=5A -
Writing the ¥, equation, 20V T ~
6/, V=0 o B
6(5)—Vm =0 Fig. 3.234
VTh = 30 Y/

Step I  Calculation of 7, (Fig. 3.235).
From Fig. 3.235,
I,=0
The dependent source 6/ depends on the controlling

variable /. When 7, = 0, the dependent source vanishes,
i.e.,6/, =0 as shown in Fig. 3.236.

20
Iy=—=5A
N7y
6l,
-+ A A
4Q 4Q
N = I
20V 20V
L 5 L 5
(a) (b)
Fig. 3.236 60
A
Step III  Calculation of R, VWV
Vw30
RTh_ﬁ_?_Mz 30V = ) 90
IL
Step IV Calculation of /, (Fig. 3.237)
B
30
IL=—rg=2A Fig. 3.237
"m Determine the current in the 16 £2 resistor in Fig. 3.238.
10 Q 6 Q
NV NV
IX
40V — 0.81, 16 Q

Fig 3.238
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Solution

Step I Calculation of V., (Fig. 3.239)
From Fig. 3.239,

1,=0
The dependent source 0.8/ depends on the controlling
variable /. When /= 0, the dependent source vanishes, as
shown in Fig. 3.240.
ie., 087, =0

VTh =40V

Step I  Calculation of /,, (Fig. 3.241)
From Fig. 3.241,

]x = ]2 vos (1)
Meshes 1 and 2 will form a supermesh,
Writing current equation for the supermesh,
11—[220.8Ix=0.8]2 ..
...(11)
[] - 1 8 [2 = 0
Applying KVL to the outer path of the supermesh,
40-104-61,=0
...(111)

107, +6 1, = 40
Solving Egs (ii) and (iii),

]1 = 3 A
5
L, ==—A
S
5
In=hL=>A
nv=h=3
Step III  Calculation of R,
Ry =240
N2
3
Step IV Calculation of /, (Fig. 3.242)
IL = 40 = 1 A
24+16

10Q 6Q
AVAVAY AVAYAY 0 A
40V — ¢ 0.8l, Vo
o B
Fig. 3.239
10Q 6Q
AVAVAY AVAVAY OA
+
40V — Vi
oB
Fig. 3.240
10Q 6Q I,

AVAVAY NNVN—> A
40V — ) ¢ 0.8/, ) In
/1 I2

B

Fig. 3.241

24 Q

AVAVAY A

o0V —|— ) 16 Q
IL
B

Fig. 3.242

" SETNTCRERTW  Find the current in the 6 2 resistor in Fig. 3.243.

1Q

18V —|—

g6

Q



Solution
Step I Calculation of V., (Fig. 3.244)
From Fig. 3.244,

Ve =—1 =-1,
For Mesh 1,

I =-3A

Ve=3V

Writing the V., equation,
18—-16L+2V, -V, =0
18+3+23)- V1, =0
Vin =27V

Step I  Calculation of 7, (Fig. 3.245)
From Fig. 3.245,

Meshes 1 and 2 will form a supermesh,
Writing current equation for supermesh,

[2 - [1 = 3

Applying KVL to the outer path of the supermesh,
1I8—-14+2V, =0
18—11+2(-1})=0

]] = 6 A
Solving Eqs (ii) and (iii),
IZ = 9 A
]N = 12 = 9 A
Step III  Calculation of R,
Ry =2 _27_3q
Iy 9
Step IV Calculation of /, (Fig. 3.246)
IL = i = 3 A
3+6

3.3 Thevenin’s Theorem 3.63

10 2V,
AVAVAY; -+ o A
-+ +
...(1) Vx
18V — ) CDsA Vrn
...(i1) I,
0B
Fig. 3.244
10 2V,
. AVAVAY: - + A
...(1) - +
Vy I
18V — ) (A)sa D
...(11) I o
B
Fig. 3.245
...(111)
3Q
NN\ A
27V —/— ) 6 Q
I
B
Fig. 3.246

" SEINIIERYB  Find the current in the 10 2 resistor.

10 Q

10V,

NV

100V —/—

-+

Fig. 3.247
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Solution
Step I Calculation of V., (Fig. 3.248)
From the figure,
V. =10x5=50V
Writing the V., equation,
100 —Vp, +10V, =V, =0
100 -V, +9V, =0
100 =V, +9(50)=0
Vin =550V
Step I  Calculation of /,, (Fig. 3.249)
From Fig. 3.249,
Ve =5y +10)
Applying KVL to Mesh 1,
100+10V, =V, =0

100
9
1
0 sy
9
550
Iy=—"—"A
N s
Step III  Calculation of R,
550
=———=-45Q
Th 7550 5
45
Step IV Calculation of /, (Fig. 3.250)
550 110
[L = =
—45+10 7

EXY| NORTON’S THEOREM

+Vm 10V,
O O - +
A B
+
100V — SQ§VX G 10 A
Fig. 3.248
A B 10V,
—O0—>0 — +
IN
+
100V — VX§SQ $)10A
Fig. 3.249
450
AVAVAY, A
550V —/— ) 10Q
IL
B
Fig. 3.250

It states that ‘any two terminals of a network can be replaced by an equivalent current source and an equivalent
parallel resistance.” The constant current is equal to the current which would flow in a short circuit placed across
the terminals. The parallel resistance is the resistance of the network when viewed from these open-circuited
terminals after all voltage and current sources have been removed and replaced by internal resistances.

Network

Fig. 3.251 Network illustrating Norton’s theorem



3.4 Norton’s Theorem 3.65
Explanation Consider a simple network as shown in Fig.3.252

Fig. 3.252 Network

For finding load current through R;, first remove the load R Rs
resistor R; from the network and calculate short circuit MV A% A
current Isc or /y which would flow in a short circuit placed
across terminals A and B as shown in Fig. 3.253. v —— § R,
For finding parallel resistance Ry,replace the voltage
source by a short circuit and calculate resistance between
points A and B as shown in Fig. 3.254. B

Ry = R, + Dk Fig. 3.253 Calculation of I,

R+R R, R,

NV AAYAY 0 A

Norton’s equivalent network is shown in Fig.3.255.

Ry
I, =y —2N R <R
LN Ry +R, §2 N

If the network contains both independent and dependent
sources, Norton’s resistances R, is calculated as

o B

Fig. 3.254 Calculation of R,
Ry = Vrm

= 7,

where V., is the open-circuit voltage across terminals 4 and
B. If the network contains only dependent sources, then In <T> § Fn

VTh=0
IN:O

Fig. 3.255 Norton’s equivalent network
To find R, in such network, a known voltage ¥ or current

[ is applied across the terminals 4 and B, and the current / or oA
the voltage V' is calculated respectively.
Ry §
RN = K
1
© B

Norton’s equivalent network for such a network is shown in

Fig. 3.256. Fig. 3.256 Norton’s equivalent network
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Steps to be followed in Norton’s Theorem

1. Remove the load resistance R, and put a short circuit across the terminals.
2. Find the short-circuit current /. or I

3. Find the resistance R, as seen from points 4 and B.

4. Replace the network by a current source /,;in parallel with resistance R,
5. Find current through R, by current-division rule.

InRy
[, =N
Ry +R;
" SETNIIERY W Find the current through the 10 2 resistor in Fig. 3.257.
5Q
NV
1Q
;10 Q Cf 4A ;15 Q
2V _‘_
Fig. 3.257
Solution
Step I Calculation of /,, (Fig. 3.258)
Applying KVL to Mesh 1,
2-1,=0
]1 = 2 (1)
Meshes 2 and 3 will form a supermesh. B
Writing the current equation for the supermesh,
Fig. 3.258
[3—[2 =4 (11)
Applying KVL to the supermesh, /\E;\g/z\/
=51, -151; =0 ...(1i1)
Ao
Solving Eqs (i), (ii) and (i), 10 § - Ry § 150
Bo
L =2A
12 = —3 A
I;=1A Fig. 3.259
[N =[1—12 =2—(—3)=5A A
Step Il Calculation of R (Fig. 3.259) I
Ry =1[[(5+15)=0.95 Q 5A (D §o.959 100
Step III ~ Calculation of /, (Fig.3.260)
0.95
I, =5x——" = 043A 5
0.95+10

Fig. 3.260
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" SEINIIERTER  Find the current through the 10 82 resistor in Fig. 3.258.

80 12V
T AA—|
20V
§2§2 § 10 Q
5Q
Fig. 3.261
80 12V
Solution T AN |, A
Step I  Calculation of 7, (Fig. 3.262) 20V
Applying KVL to Mesh 1, ) § 50 ) Iy
—5[1+20—2(]1—12):0 () 5Q I b
.
71, -2, =20
B
Applying KVL to Mesh 2
PPying oSS Fig. 3.262
—2(12—]1)—812—12=0 8Q ..
AN ..(11)

=20 +1071, =-12

Solving Egs (1) and (i1), 50 ; § 0 ° A
< Ay
I, =-0.67A o
IN = ]2 = —067A
Step I  Calculation of R, (Fig. 3.263) Fig. 3.263 B
Ry =(5]12)+8=9.43 Q
Step III  Calculation of I, (Fig. 3.264) 067A(Y) § 9.430 100
9.43 I
I; =0.67x———=033A(T
t 9.43+10 () B
Fig. 3.264

" SEINNIERR  Find the current in the 10 2 resistor in Fig. 3.265.

50 V—/

50 Q
AAAY
20Q
§4OQ
—|— 10V

§1OQ

Fig. 3.265
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Solution
Step I  Calculation of /,, (Fig. 3.266)

The resistance of 40 Q2 becomes redundant as it is
connected across the 50 V source (Fig. 3.267).
Applying KVL to Mesh 1,

50—50[1 —20(11 —]2)—1():0

..(1)
701, — 201, =40
Applying KVL to Mesh 2,
10-20(/, -71;)=0 ..
...(11)
-20/,+20/, =0
Solving Egs (i) and (ii),
[1 = lA
12 = 15A
IN = ]2 = lSA

Step Il  Calculation of R, (Fig. 3.268)

Ry =50]120=14.28 Q

Step III  Calculation of /, (Fig. 3.269)

14.28

X ———=0.88A
14.28+10

[L =1.5

50 Q
NN
200
50V — §4o Q In
T 10V
Fig. 3.266
50 Q
AVAVAY
40 Q 200
—50V In
I I
! T 10V 2
Fig. 3.267
50 Q
AVAVAY, o A
e RN
§ 40 Q § 20 Q
oB
Fig. 3.268
A
IL
15A D §14.289 10Q
B
Fig. 3.269

" EVNVACEN I Find the current through the 10 2 resistor in Fig. 3.270.

10V — §1Q

6 Q 2 Q
NV NV

Fig. 3.270
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Solution 60 20

Step I  Calculation of /,, (Fig. 3.271)
Applying KVL to Mesh 1,

10V = §1Q §39 In
10—611 —1(]] —]2): 0
I b Iy

7L -1, =10 (1) |
I B
Applying KVL to Mesh 2, 20'
—1([2—[1)—2[2—3(12—13):0 Fig. 3.271
- +61,-3I;=0 (11)
6 Q 2Q
Applying KVL to Mesh 3, NN\ NN OA
=3Iz -1,)-20=0 o 50 -
31, —31; =20 ...(iii) § § N
Solving Egs (1), (i1) and (iii), 0B
I;=-13.17A Fig. 3.272
]N = 13 = —1317A
. . 2Q
Step II  Calculation of R, (Fig. 3.272) AN A
Iy
Ry =[(6]|D)+2]]|]3=1.46Q
v =Lelh 21l 1317 A (§) §1.46§z 100
Step III  Calculation of /, (Fig. 3.273)
1.46 B

I, =13.17x———=1.68A(T)
1.46+10

Fig. 3.273
" EINVNCER YR  Find the current through the 10 2 resistor in Fig. 3.274.
10 Q 20 Q 30 Q
S VAVAY AVAVAY NV
50V = 20 Q §ZOQ —— 100V
40V
T
Fig. 3.274
Solution A 20 Q 30 Q

Step I Calculation of [, (Fig. 3.274) ?
Applying KVL to Mesh 1,

Applying KVL to Mesh 2,

N B
> o0— AN AN
50-20(/,-1;)-40=0 0 50 V —— ) 20Q ) §QOQ ) —=100V
207, —207, =10 h o Iy
40V
T 0

40-20(1, —1;) =201, —20(I> — I;)=0 Fig. 3.275
—201, +607, —207; =40 ...(ii)
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Applying KVL to Mesh 3,
—20(15—-1,)-3015-100=0

...(111)

201, +50/3 =-100

Solving Egs (i), (ii) and (iii),

I, =081A
IN = 11 = 081A
Step I  Calculation of R, (Fig. 3.276)
Ry 20 Q 30 Q
oo AVAVAY, NV
A i B
Ry =[(201/30)+20]]|20 =12.3Q ;209 ;209
Fig. 3.276
Step III  Calculation of /, (Fig. 3.277)
A
IL
0.81A 12.3 Q 10 Q
1 =081x=23_ 45 b
12.3+10
B
Fig. 3.277

" ENIJACERER  Obtain Norton’s equivalent network as seen by R, in Fig. 3.278.

30 Q 4°|V 100 R,
— VWV 1] AVAVAY AVAVAY
120V — §eog §309 10V
Fig. 3.278
40V
: 30 Q 100Q A In B
Solution A ’I AA ) o

Step I Calculation of /,, (Fig. 3.279)

Applying KVL to Mesh 1,
120V — ;609 §SOQ — 10V
120-307, —60(1; —1;)=0 I I I3

901, — 601, =120 (D)




3.4 Norton’s Theorem 3.71

Applying KVL to Mesh 2, 200 10Q abBn g

—60(I, —I,)+40—101, —=30(I, — I;) = 0 Vv VWV ° l o—
—601, +1007, —301; = 40 ...(ii)

§ 60 Q § 30 Q
Applying KVL to Mesh 3,
-30(,-1,)+10=0
307, —307/5 =-10 ...(1i1)
Solving Eqs (i), (ii) and (iii),
I3 =4.67A A
Iy =13=467A
Step I  Calculation of R, (Fig. 3.280) 4.67A f) § 1o At
Ry =[(30]/60)+10]]|30=15Q
Step III Norton’s equivalent network (Fig. 3.281)

Fig. 3.280

Fig. 3.281
" SETWNIENT W  Find the current through the 8 2 resistor in Fig. 3.282.

5ACD 120 40 G 2A 8Q

Fig. 3.282
Solution
Step I Calculation of 7, (Fig. 3.283)
5V
|y
| I A
5A<D §129 §4Q Q 2A In
B
Fig. 3.283

The resistor of the 4 € gets shorted as it is in parallel with the short circuit. Simplifying the network by
source transformation (Fig. 3.284),

12Q 5V

AN—| A

60V —— ) CDQA D I
I, I

B

Fig. 3.284
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Meshes 1 and 2 will form a supermesh.
Writing the current equation for the supermesh,

]2 —]1 =2
Applying KVL to the supermesh,
60—-12/,-5=0
121, =55
Solving Eqgs (1) and (i1),
11 = 458A
I, =6.58A
]N = 12 = 658A

Step Il  Calculation of R, (Fig. 3.285)
Ry =12]14=3Q
Step III  Calculation of /, (Fig. 3.286)
3

(1) 120 §

o A

(i
) Fig. 3.285

§39

6.58 A D

Fig. 3.286

I} =6.58x——=1.79A

3+8

" SETWN N  Find the current through the 1 2 resistor in Fig. 3.287.

1A CD

Solution
Step I Calculation of 7, (Fig. 3.288)

Fig. 3.287

0 A

1 A(D

2 20

NNV

1V §ZQ

NV oB
20

Fig. 3.288
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By source transformation (Fig. 3.289),

3Q |
%W;ZQ
WL
Iy
AVAVAY, o B

2Q
Fig. 3.289
Applying KVL to Mesh 1, °A
2Q
-3-3-2(I; -13)+1=0 (0
5 =213 =-2 30 - ~<~—RhRy
Applying KVL to Mesh 2,
NNV oB
—1-2(,-13)-2,=0 (ii) 2Q
Applying KVL to Mesh 3, 2Q 2Q
AYAVAY AYAVAY,
AL -1)-25-15)=0 (i)
..(iii
=20 -2, +41; =0 Ao— ——oB
Solving Eqgs (1), (i1) and (iii), AN AN
3Q 2Q
I, =-0.64A (b)
I =-0.55A 120 10
I3 =-0.59A Ao AAAY, AAAY oB
[N =[3 =—-0.59A (C)
Step Il  Calculation of R, (Fig. 3.290) Fig. 3.290
Ry =22Q
Step III  Calculation of /, (Fig. 3.291)
A
2.2 0.59 A § 22Q 1Q
I; =0.59% =041A ¢>
22+1 I
B

Fig. 3.291
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EXAMPLES WITH DEPENDENT SOURCES

" SETNIERW  Find Norton's equivalent network across terminals A and B of Fig. 3.292.

10 Q

ANVN——o0 A

10Q 5Q
5V 104,
[ g
Fig. 3.292
Solution
Step I Calculation of V., (Fig. 3.293) 3/ 109
From Fig. 3.293, ] ] — + AN oA
_ 2 1
2 =1 100 50
]1 = _Ix

Applying KVL to the mesh,
5-107,-51,-107, =0
5-107,-51,-101, =0

I,=02A
I =-02A
Writing the V., equation,
5-107,+35L =V, =0
5-10(0.2)+3(-0.2)-V, =0
Vin =24V

Step I  Calculation of /,, (Fig. 3.294)
From Fig. 3.294,
I, =1,
L=1,-1I,
Applying KVL to Mesh 1,
5-107,-5(1,-1,)-101, =0
5-107,-51,+51,-101,=0
251, =51, =5
Applying KVL to Mesh 2,
101, =5(1, —1,)+35, =101, =0
101, =51, +51,+3(1, —1,)-101, =0
127, =121, =0

(i)

...(iii)

.(iv)

oB
Fig. 3.293
8 00
50
) ) i
5V Iy 104, ly
T o) B
Fig. 3.294
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Solving Eqs (iii) and (iv),
I, =025A

O A
I,=025A
Iy=1,=025A 0.95 A ¢> §9.6§2
Step III  Calculation of R,
Vin 2.4
=—=——=96Q
My 025 °B
Step IV Norton’s Equivalent Network (Fig. 3.295) Fig. 3.295
" Example 3.67 For the network shown in Fig. 3.296, find Norton’s equivalent network.
20 Q
NV OA
5Q 3V,
2A 2Q
OB
Fig. 3.296
Solution i(/)\?\, iy
Step I  Calculation of V., (Fig. 3.297) - +
From Fig. 3.297, 5Q ) T 3V
: I g
V. =2L (D) * isa
For Mesh 1, VWV Vrh
+
I, =3V, = —32L,) = 61, RUNPNG :> Wgzg
For Mesh 2, A _
L=2 ...(ii}) °B
I =—61, =—6(2)=—-12 A Fig. 3.297
Writing the V., equation, i(/)\j)\/ p
O
Vi — 0451 +15(1, — I,) =21, = 0 59§ :> Nay
Vi +5(=12)+15(-12-2)-2(2) =0 I, X
15Q
VTh =274V AN\ ) Yy
+ I
Step II Calculation of I, (Fig. 3.298) v § 8
From Fig. 3.298, 2a(H) / S
A -
Vx:2(12_[3) (1) O B
For Mesh 2, Fig. 3.298

=2 ...(ii)
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Meshes 1 and 3 will form a supermesh.
Writing the current equation for the supermesh,

Ii—1, =3V, =3[2(1, - I5)| =61, - 61;

L+6l,-71;=0 (111)
Applying KVL to the outer path of the supermesh,
—51’} —20[3 —2(1,3 - [2)—15(1’1 - [2) =0
=200 +171, -221; =0 (lV)
Solving Egs (ii), (ii1) and (iv),
I, =-0.16 A
12 =2A
;=169 A oA
Iy =1=1.69 A
Step III  Calculation of R, 1.69 A f) § 162.13 Q
274
Ry=""-2 ip130
Iy 1.69 0B
Step IV Norton’s Equivalent Network (Fig. 3.299) .
Fig. 3.299
" FETNIIEN MW Obtain Norton’s equivalent network across A-B in the network of Fig. 3.300.
5Q 2Q
AA%Y AYA%AY OA
+ b
15V Vi ;89 1o, (Hosy, Z15Q
o B
Fig. 3.300
: 5Q 2Q
Solution NN, AN, oA
Step I Calculation of V_, n n b
(Fig. 3.301) 15V —— v, §8£2 o1, 06V, 159 Vi
From Flg 3301, I, B Iy I, B
Vl:8(]x_ly) (1) o B
Applying KVL to Mesh 1, Fig. 3.301
15-51,-8(I,—1,)=0
137, -81, =15 ...(11)
Applying KVL to Mesh 2,
=81, —1,)-21,-101, =0
81, —107, —101, =0 ...(1i1)



For Mesh 3,

3.4 Norton’s Theorem 3.77

I, = 0.6V = 0.6[8(7, - 1,)]

481, -481,-1,=0 ...(v)
Solving Egs (ii), (iii) and (iv),
I, =328 A
— 5Q 20
Iy=345A AN A A
I,=-083 A N 2
Writing the V., equation, 15V — Vi § 8Q N 10h, T 0.6V, 15Q In
15]2 - VTh = 0 h
15(-0.83) =V =0 B
Vip =-1245V Fig. 3.302
Step Il Calculation of /,, (Fig. 3.302) . .
From Fig. 3.302, A AA, A
L,=0 +
The dependent source of 10 7, depends 15V ) Vi § 8Q ) T 0.6V, In
on the controlling variable 7, When Ix - ly
I, =0, the dependent source vanishes, B
1.e. 10/, =0 as shown in Fig. 3.303.
From Fig. 3.303, Fig. 3.303
i=8.-1,) ...(1)
Applying KVL to Mesh 1,
15-51,-8(1,-1,)=0
137, -8, =15 ...(11)
Applying KVL to Mesh 2,
=81, -1,)-21,=0
—81,+107, =0 ...(ii1)
Solving Egs (i1) and (ii1),
I,=227A
I,=182A
M=8I,-1,)=8227-1.82)=3.6V oA
For Mesh 3,
Iy =0.6V1=0.6(3.6)=2.16 A
N. 1 (36 2.16 A D §—5.76§z
Step 11l  Calculation of R,
-12.4
RN:Vﬂ= 5:—5.769 oB
Iy 2.16

Step IV Norton’s Equivalent Network (Fig. 3.304)

Fig.

3.304



3.78 Network Analysis and Synthesis

" SEINIERTR  Find Norton's equivalent network of Fig. 3.305.

O A
Y
0.5l
1o
2Q
2V
Fig. 3.305 / QA
:
0.5/,
Solution "
Step I Calculation of V., (Fig. 3.306) 1Q Vrn
Applying KVL to the mesh, 2Q -
2-201+05L -1, =0 2V
2-25L=0 L oB
L=08A Fig. 3.306
Writing the V., equation, oA
— Y
L=V =0 051,
10.8) =V, =0
Vip = 0.8 V §1Q |
2Q
Step Il Calculation of /,, (Fig. 3.307)
When a short circuit is placed across the 1 Q resistor, it gets shorted. oV
=0 T OB
The dependent source of 0.5/; depends on the controlling variable _
I,. When I; =0, the dependent source vanishes, i.. 0.5 7, = 0 as shown Fig. 3.307
in Fig. 3.308. A
2
Iy===1A
N 2 Q% Iy
Step III  Calculation of R, oV
Ry = Ym _ 98 _h50 B
Iy 1
Step IV Norton’s Equivalent Network (Fig. 3.309) Fig. 3.308
O A
1A (D § 0.8Q
o B

Fig. 3.309
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" SEINIIEWOR  Find Norton’s equivalent network at the terminals A and B of Fig. 3.310.

6l,
—
3Q 2Q
AAYAY VW oA
9V —|(— 60Q
o B
Fig. 3.310
61,
Solution =
Step I Calculation of V., (Fig. 3.311) D
From Fig. 3.311, 3Q I, 2Q
A
ro=1 () A T A
Applying KVL to Mesh 1, OV — 6Q Vin
9—3([1—[2)—611:0 I1 _
9, —31,=9 ...(i) °B
For Mesh 2, Fig. 3.311
I, =61, =61,
6[1-[2 =0 (111)
Solving Eqs (ii) and (iii),
L=-1A
]2 = —6 A
Writing the V., equation,
9—3([] —[2)+2[2 -V =0
9-3(-1+6)+2(—6)-Vr, =0
VTh =-18V
Step I  Calculation of 7, (Fig. 3.312) 6/,
From Fig. 3.312, .
I, =1 -1 ...(0) ')
. 3Q A 2Q
Applying KVL to Mesh 1, AN — W A
. X
9-3L - L) -6 -13)=0 oy -
3 T 6Q I
9[1—3[2—61329 ...(11) | Iy
;
For Mesh 2, B
Ly =06l =6(11 =) Fig. 3.312
6[1—[2—613:0 (111)

Applying KVL to Mesh 3,
=6(I3 —11)-2(I3-1,)=0

—61, =21, +81; =0 .(iv)
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Solving Eqs (ii), (iii) and (iv),

I =5A
]2 :3 A
13 =45A
[N :[3 =45A
Step III  Calculation of R,
v :@:__18:_4 Q
Iy 4.5

Step IV Norton’s Equivalent Network (Fig. 3.313)

" Example 3.71 Find Norton’s equivalent network to the left of terminal A-B in Fig. 3.314.

6 Q

V)05 §4Q

Fig. 3.314

Solution Since the network does
independent source,

not contain any
6 Q
Vi =0
]N = O !
But R, can be calculated by applying a known current
source of 1 A at the terminals 4 and B as shown in Fig.

3.315.
From Fig. 3.315,

=2
6
Applying KCL at the node,
K+O.5[+—=1
6
K+O.5K+K:1
6 6 4
1 05 1
—+—+— (V=1
6 6 4
V=2
Vo2
Ry=—==—=2Q
M

Hence, Norton’s equivalent network is shown in Fig. 3.316.

OA
45A D ;—49
o B
Fig. 3.313
OA
o B
v
. A
V)05 40
B
Fig. 3.315

1A
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" SEINNIEWPR  Find the current through the 2 £2 resistor in the network shown in Fig. 3.317.

2]
20 |, x

AAN—> <~

—1ov<_> G 2A §4Q §1osz

Fig. 3.317
Solution | -2,
Step I Calculation of V., (Fig. 3.318) S, 8 o
From Fig. 3.318, T
I, =0
i -ov () (1) 24 §4§2 §1og
The dependent source of =2 /_depends on T
the controlling variable /. When 1, =0, the
dependent source vanishes, i.e. -2/, =0 as
shown in Fig. 3.319. Fig. 3.318
[1 =2
. . /
Writing the V., equation, A VThE - o
+ p—
—IO—VTh —4[1 =0
10—V, —4(2) = 0 -ov () Q 2AI) §4Q §1og
1
VTh = —18 A
Step I  Calculation of 7, (Fig. 3.320) Fig. 3.319
From Fig. 3.320,
-2/
— : / 1y X
[x_ll (1) _é\ :N B - Ze O

Mesh 1 and 2 will form a supermesh.

Writing the current equation for the "
-10V _> Q 2A §4Q §1og
supermesh,
Iy I Iy

I,-1,=2 ...(11)
Applying KVL to the outer path of the
supermesh, Fig. 3.320
-10-4(l, -13)=0
—41,+415 =10 ...(111)

For Mesh 3,
[3 = _(_2Ix): 2[x 2211
2[1—[320 (IV)
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Solving Eqs (ii), (iii) and (iv),
11 =45A
Ib=65A
13 =9A
[N = 11 =45A
Step I1I  Calculation of R,
Vo 18

=" " - 40
Iy 45

N

Step IV Calculation of /, (Fig. 3.321)

—4
—4+2

I, =45x =9 A

45A D

Fig. 3.321

" EVNNCEWER  Find the current through the 282 resistor in the network of Fig. 3.322.

A%

R VA
1Q
5V —+—
4V
Fig. 3.322
Solution
Step I  Calculation of V., (Fig. 3.322)
From Fig. 3.323,
54+V;+4V; =0
Vi=-1V
Writing the V., equation,
4%~V =0

Vip = -4V, = —4(-1)=4 V

Step I  Calculation of /,, (Fig. 3.324)
From Fig. 3.324,

5+%,=0
Vi=-5V

Applying KVL to the mesh,

Iy = -4V, = —4(=5)=20 A

2Q

5V

v, o A
1Q
Y IN
av,
OB
Fig. 3.324



3.4 Norton’s Theorem 3.83
Step III  Calculation of R, A
Vin 4
Ry=—=—=02Q
YT 20 20a(}) ;029 20
Step IV Calculation of /, (Fig. 3.325)
B
I; =20x 0.2 =182 A ;
L 0242 Fig. 3.325
" Example 3.74 Find the current in the 2 (2 resistor in the network of Fig. 3.326.
1Q |, 21,
AN _
v Q 1A 30 20
Fig. 3.326
Solution
Step I Calculation of V., (Fig. 3.327) 1Q |, 21,
Meshes 1 and 2 will form a supermesh. 4%e N = oA
Writing current equation for the supermesh, 10V —
L-L=1 .. /D (D“I‘ 30 Vi
Applying KVL to the outer path of the ! 2 B 5B
supermesh,
10-17/;, -3, =0 Fig. 3.327
L+31,=10 (11)
Solving Egs (1) and (i1),
L =175A
I, =275A
Writing the V., equation,
3[2 - VTh =0
3(2.75) -V =0
Vih =825V
Step I  Calculation of /,, (Fig. 3.328) 1Q Iy 21,
From Fig. 3.328, 2 ae =
I, =1 (1)
e 1A 3Q \&
Meshes 1 and 2 will form a supermesh. 10V | > <¢> , ) . D N
Writing the current equation for the supermesh, ! 2 ®
IL-1 =1 ...(ii)

Applying KVL to the outer path of the supermesh,
10—1[1 —3(12 —]3) = 0

Fig. 3.328
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L +31, -3 =10 ...(iii)
For Mesh 3,
[3 = 2[x = 2[1
2[1—13 =0 (IV)
Solving Egs (i1), (ii1) and (iv),
L =-35A
I,=-25A
13 = —7 A
Iy=L=-7A
Step III  Calculation of R, A
Iy
_Vm 825
RN—K——_7 =-1.18Q A f) ;—1.189 50
Step IV Calculation of /, (Fig. 3.329)
B
—-1.18
]L:_7X——1.18+2:10'07A Fig. 3.329
" Example 3.75 Find the current through the 10 (2 resistor for the network of Fig. 3.330.
3l
— ¥
IX
2Q
5Q § 10 Q
oV T
Fig. 3.330
. 3,
Solution 5 oA
Step I Calculation of ¥, (Fig. 3.331) gk
Applying KVL to the mesh, 2Q
10-27, +31, =51, =0 _
0V
I,=25A T oB
Writing the V., equation, Fig. 3.331
5T, —Vm =0 31,
5(25) _VTh = O — + I
Vi =125V
5Q Iy

Step I  Calculation of /,, (Fig. 3.332)
From Fig. 3.332,

I,=0

o0V

Fig. 3.332
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The dependent source of 3 /_depends on the controlling variable /. A
When [, =0, the dependent source 3 /_vanishes, i.e. 31 =0 as
shown in Fig. 3.333. 2Q Iy
1
IN = ?O = 5 A 0V T
B
Step III  Calculation of R, Fig. 3.333
|12 12.5
Ry=—"=""=25Q A
Iy I,
Step IV Calculation of I, (Fig. 3.334) sa(}) § 250 S10Q
2.5
I; =5x =1A
FTT 25400 B
Fig. 3.334
" ENVNCEWW  Find the current through the 5 2 resistor in the network of Fig. 3.335.
20 |, 40
AN—> A
12V —/— 5Q 41,
Fig. 3.335
Solution
Step | Calculation of V., (Fig. 3.336) 2Q Iy 4Q
Applying KVL to the mesh, VWV (L VWV
+0A
12-21,-41,-41,=0 1oy —— Vi 4l,
12-10/, =0 —oB
I,=12A T
Writing the V., equation, Fig. 3.336
12_2[}: _VTh =0
12-2(1.2)- V1, =0
VTh =96V
Step I  Calculation of 7, (Fig. 3.337)
From Fig. 3.337,
L=1 ..»0) 2Q 40
Applying KVL to Mesh 1, VN> VWV
12-25=0
12V —/— / 41,
L=6A ..G) 2V / v />
Applying KVL to Mesh 2, ! 2
—41,-41, =0

—41, -4, =0 ...(ii)
Solving Eqs (i) and (iii),
Ihb=—6A
IN :[1—]2 :6—(—6):12A



3.86 Network Analysis and Synthesis

Step III  Calculation of R,

Ry=Ym_28_4gq
Iy
Step IV Calculation of /, (Fig. 3.338)
I; =12x% 038 =1.66 A
0.8+5

12A D go.tm 50

Fig. 3.338

" SEIWIENIE  Find the current through the 10 2 resistor for the network of Fig. 3.339.

50
NV
40
Posy, v
5V
T
Fig. 3.339

Solution
Step I  Calculation of V., (Fig. 3.340)
For the mesh,

I =-0.5V, =05V,
Writing the V., equation,
5-41-0-V, =0
5-4(-0.5Vm)—Vm =0
Vin=-5V
Step I  Calculation of /,, (Fig. 3.341)

From Fig. 3.341,
Ve=0

The dependent source of 0.5V, depends on the controlling
variable V. When V; =0, the dependent source vanishes, i.e. 0.5
V_=0as shown in Fig. 3.342.

5 5
Iy=——==—A
Y445 9
Step III  Calculation of R,
Ry="m -3 99
Iy 5
9
Step IV Calculation of /, (Fig. 3.343)
I =2x D _sa
9 —-9+10

50
AVAVAY, 0 A
+
40
0.5V, Vi = V,
5V T !

10 Q

o B
Fig. 3.340
50
AVAVAY, - A
40
% <>0.5 V, Ve Y Iy
5V
L 6B
Fig. 3.341
50
AVAVAY, A
4Q
In
5V
1 5
Fig. 3.342
A
IL
5
Sa (D § 90 100
B
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" SEINNIEWLER  Find the current through the 10 2 resistor in the network shown in Fig. 3.344.
1000Q

NN—>
+
12V — 2V, 51, VX§25§2 ;109

Fig. 3.344

Solution 1000Q
Step I Calculation of V., (Fig. 3.345) NVN—> oA
From Fig. 3.345, +

— +
Ve=-25(51)=-1251, .() VT )2V ()5 Vx§259 Vi

Applying KVL to Mesh 1,
12-10007, =2V, =0
12-10007, —2(~1251,) =0 ...(ii) Fig. 3.345
I,=0.016 A
V, =-1251; =-125(0.016)= 2 V

Writing the V., equation, 1000 Q
VY

Y=

Vin =V, =2V

Step Il Calculation of /,, (Fig. 3.346) 12V — 2V, 51, ng 25Q Iy
From Fig. 3.346,

Ve=0 B

The dependent source of 2V depends Fig. 3.346
on the controlling variable V. When
V. =0, the dependent source vanishes,
ie.2 ¥V =0 as shown in Fig. 3.347.

1000Q |/,

12 p—
I =—=—=0012 A 12V 5/
1000

Iy = =51, = =5(0.012) = —0.06 A

Step 11l ~ Calculation of R, Fig. 3.347

Vi -2 A
Ry=-M == -3333Q I,
Iy —0.06

Step IV Calculation of /, (Fig. 3.348)

B
_ 3333 =-0.046 A

I, =—0.06x
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" Example 3.79 Find the current through the 5 €2 resistor for the network of Fig. 3.349.

14V
'
1Q 2Q
NV AVAVAY
Y,
1Q §
5Q
Y av,
2A
Fig. 3.349
Solution I 4V
Step I Calculation of V., (Fig. 3.350)
From Fig. 3.350, \1/\‘}\ \2/{2/»
Ve=2I ...(1) Ty, T + oA
For the mesh, 1Q Vi
I1=2 ...(ii) ) 4v, 9B
Vx = 2(2) = 4 V 2A /
Writing the V., equation,
4V, + 21+ +4—-Vr, =0 .
Th Fig. 3.350
4D +2(Q)+2+4-V1, =0
Vin =26 V
Step I  Calculation of /,, (Fig. 3.351)
From Fig. 3.351, JEal
Ve=2( - (@ I
X (]1 ]2) (1) 10 50 2
For Mesh 1, AN AAA,
I, =2 ...(ii) Ty, T Ao
Applying KVL to Mesh 2, 1Q Yy
AV, - AL - 1)~ I, —I,)+4=0 ) Nav, BY
A1 — 1) =20+ 20 =1, + I, +4=0 2A h
1111—1112:—4 (111)
Solving Eqs (ii) and (iii), Fig. 3.351
[1 =2A
I,=2.36 A
Iy=1,=236A ’
Step IIl  Calculation of R, ‘
11.02 Q 5Q
Ry =" -2 110 2364 (}) §
Iy 236
Step IV Calculation of /, (Fig. 3.352) B

I =2A36xﬂ=1.62A
11.02+5

Fig. 3.352
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" Example 3.80 Find the current through the 1 2 resistor in the network of Fig. 3.353.

3.89

6Q I,
NN\~
12V —( 3/, 3Q 1Q
Fig. 3.353
Solution
Step I  Calculation of V., (Fig. 3.354) 6Q I
From Fig. 3.354, NV ?
I,=1 ..(3) 5 B
12V —/ 3Q V-
Meshes 1 and 2 will form a supermesh. I XI2 < ™
Writing the current equation for the supermesh, 5
I, -1, =31, =3I
2o Fig. 3.354
4[1—[2:0 (11)
Applying KVL to the outer path of the supermesh,
12—-61,-31, =0
6l,+31, =12 ...(1i1)
Solving Eqs (ii) and (iii),
I, =0.67 A
I, =267 A 6Q I,
Writing the ¥, equation, VA= A
3, =V =0 12V — 3/, 30 Iy
3(2.67) =V, =0
VTh = 8 V B
Step 11 Calculgtiop QfIN (Fig. 3.355) . ‘ Fig. 3.355
When a short circuit is placed across a 3 € resistor, it
gets shorted as shown in Fig. 3.356. 60 I
From Fig. 3.356, ANAN—> A
Ix = 11 .. (1)
Meshes 1 and 2 will form a supermesh. 12V > Sl ) In
Writing the current equation for the supermesh, h lp
B
]2 _Il = 31x = 3[1
AL -1, =0 ..(i) Fig. 3.356
Applying KVL to the outer path of the supermesh,
12-6/,=0
Iy =2 ...(iii)
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Solving Egs (ii) and (iii),

]1 :2A
I,=8A
IN :[2 :SA
Step III  Calculation of R, 8 A (T) ;1 o
Re="m2810
Iy 8
Step IV Calculation of /, (Fig. 3.357) Fig. 3.357
I; :8><L:4A
1+1

" ETNICER I  Find the current through the 1.6 2 resistor in the network of Fig. 3.358.

31,

-+

10A D 10 §6Q §1.6Q

Fig. 3.358
Solution 3/,
Step I Calculation of V., (Fig. 3.359) g oA
From Fig. 3.359, Ix + "
I,=1-1, ...i) 10A D ) 10 ) ;69 Vrn
/ /
For Mesh 1, 1 2 - ~
L=10 .. (i) °B
Applying KVL to Mesh 2, Fig. 3.359
—1([2 _Il)+3[x —6[2 = 0
-1, +1 +3([1 —[2)—612 =0
Solving Eqs (ii) and (iii),
I, =10 A
I,=4A
Writing the V., equation,
612 - VTh = 0
6(4)—Vm, =0

Vin =24V
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Step I  Calculation of /,, (Fig. 3.360) 3,
When a short circuit is placed across the 3 € resistor, i A
it gets shorted as shown in Fig. 3.361. Iy
F Fig. 3.361
rom g ’ _ 10A f) 1Q §6£2 Iy
I,=5L-1, ...(1)
For Mesh 1, B
I, =10 ...(11)
Applying KVL to Mesh 2, Fig. 3.360
_1([2_11)+3[x=0 3y
—L+ 1 +3(L = 1,) =0 / > A
4]1—4]2 =0 (111)
1Q 1
Solving Egs (ii) and (iii), 10a (1) / ) / ) N
L=10A 1 ?
B
I, =10 A
In=1,=10A Fig. 3.361
Step III  Calculation of R, A
l}
Ry="m_2%_ 540 '
Iy 10 10A D § 240 160
Step IV Calculation of /, (Fig. 3.362)
. B
I; =10x 24 =6A
24+1.6 Fig. 3.362

EXJ| mAXiMUM POWER TRANSFER THEOREM

It states that ‘the maximum power is delivered from a source to a load when the load resistance is equal to
the source resistance.’

Proof From Fig. 3.363, Aq
i A

Rs + RL >
V — § R,
VR, /

Power delivered to the load R, = P=1*> R, =

(Rs+R;)*
To determine the value of R, for maximum power to be transferred Fig. 3.363 Network illustrating
to the load, ,
maximum power transfer
dp -0 theorem
dR;
P 2
d d 14 R,

dR,  dR, (R, +R,)
VPR, + R.)® = (2R )R, + Ry)]
(Ry+Ry)*
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(Ry+Ry)’> =2 Ry(Ry+R.)=0
R>+R;>+2R,R, —2R, R, —2R} =0
Rs:RL

Hence, the maximum power will be transferred to the load when load resistance is equal to the source
resistance.

Steps to be followed in Maximum Power Transfer Rh
Theorem NV A
1. Remove the variable load resistor R,.
2. Find the open circuit voltage ¥, across points 4 and B. Vin — ) R.=Rm
3. Find the resistance R, as seen from points 4 and B. I
4. Find the resistance R, for maximum power transfer. B

Ry = Ry . L,
Fig. 3.364 Thevenin’s equivalent network
5. Find the maximum power (Fig. 3.364).

[ Vtn P
;= =
RTh +RL 2RTh
Prax =17 Ry ==X Ry =—"
4RTh 4RTh

" SEINICRERY  Find the value of resistance R, in Fig. 3.365 for maximum power transfer and

calculate maximum power.

20 AL
A y%&
3V 2Q —_— 10V
6V
1 NV
2Q
Fig. 3.365
Solution
Step I  Calculation of V., (Fig. 3.366) 2Q A B
Applying KVL to the mesh, 7V ° Vi o
3-21-21-6=0 '
I=-0.75A 3V m 2Q —— 10V
Writing the V., equation, ! 6V
6+21 -V, —10=0 1 NV
2Q
Vin =6+21-10=6+2(-0.75)-10=-5.5V
Fig. 3.366

= 5.5 V(terminal Bis positive w.r.t A)
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. . 2 Q
Step Il  Calculation of R, (Fig. 3.367) A, é\ A g
R =(212)+2=3Q
Step III  Calculation of R, § 20
For maximum power transfer,
Ry =R, =3Q NN
2Q
Step IV Calculation of P__ (Fig. 3.368)
Fig. 3.367
3Q
AYAAY A
Vin  (5.5)°
e = O ) sy
4R, 4X3 55V — 3Q
B
Fig. 3.368

" SEINICIERER  Find the value of resistance R, in Fig. 3.369 for maximum power transfer and

calculate maximum power.

5Q
NV
1Q 5Q
g/f R AA <¢>
8V T T 10V
Fig. 3.369
Solution 50Q
Step I Calculation of V., (Fig. 3.370) - VWA= N
L-5=4 VRN 34 fo
Applying KVL to the outer path, A Vin CT) 4A -
8—15, =51, =51, -10=0 8V _TB ! I 10V
61, -51, =2 L ]
Solving Egs (i) and (ii), Fig. 3.370
I =-2A .
...(11) 50
12 = 2 A AN
Writing the V., equation, lA
8—15, -V, =0 1Q § R, 559
Vin =8I, =8—(=2)=10V TB

Step Il  Calculation of R, (Fig. 3.371)
R =10]1=091Q Fig. 3.371
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Step III  Calculation of R,
For maximum power transfer,

RL = RTh = 091 Q

Step IV Calculation of P

p
Vin

(10)*

max

T 4Ry 4%091

=2747W

10V —

0.91Q
AN A
— 0.91 Q
B
Fig. 3.372

" SEINIIERLN  Find the value of the resistance R, in Fig. 3.373 for maximum power transfer and

calculate the maximum power.

10Q

2Q

50AG>

NV

AYAYAY

S50

S 30

é/m

Solution
Step I  Calculation of V., (Fig. 3.374)
For Mesh 1,
11 = 50
Applying KVL to Mesh 2,
—5([2 —[1)—2[2 —3[2 =0
5I,-101, =0
]1 = 212
I, =25A

Fig. 3.373

Van =31, =3(25) =75V

Step II  Calculation of R, (Fig. 3.375)
Ry =(5+2)]|3=2.1Q

Step III  Calculation of R,
For maximum power transfer,

RL =RTh :ZIQ

Step IV Calculation of P (Fig. 3.376)

V4 (75)°
4Rr, 4x2.1

max

=669.64 W

10Q 20Q
AN~ AN oA
+|- +
50A<D ) §59 ) §SQ Vi
Iy SN+ b =
o B
Fig. 3.374
10Q 20
AVAYAY AVAVAY, oA
§5£2 § 3Q R,
oB
Fig. 3.375
21Q
AVAVAY A
75V — 21 Q
B
Fig. 3.376
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" SEINI IR LW  Find the value of resistance R, in Fig. 3.377 for maximum power transfer and

calculate maximum power.

3Q
NV
50 Q 5 A ; 0 /%V R,
10V T
AYAAY
40
Fig. 3.377
3Q
Solution B NW\—o0 A
Step I Calculation of V., (Fig. 3.378) 50 '
Writing the current equation for the supermesh, B ) <f> 6A § 20Q Vin
I,-1,=6 (1) 1oV T h <" -
Applying KVL to the supermesh, /\i\é\’ °B
10=3h =25 =0 (i) Fig. 3.378
il . 3.
SI+21, =10 '8
Solving Eqgs (i) and (ii), 3Q
NV 0 A
I, =-029A
12:571A 50 § §2Q <_RTh
Writing the V., equation,
Von =21, =11.42V AN o B
40
Step Il  Calculation of R, (Fig. 3.379)
Rey = (5]12)+3+4=843Q Fig. 3.379
Step III  Calculation of R, 843 Q
For maximum power transfer, NV A
RL = RTh = 843 Q
1142V —/— 8.43 Q
Step IV Calculation of P__ (Fig. 3.380)
Vi (11.42)° B
Pmax AL ( ) =387 W
4RTh 4x8.43 Fig. 3.380

" EINJCRERITM  Find the value of resistance R, in Fig. 3.381 for maximum power transfer and

calculate the maximum power.
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120V = /g"RL §59 Q 6A

Fig. 3.381
Solution 10 Q
Step I Calculation of V., (Fig. 3.382) VYWV l
Applying KVL to Mesh 1, Ao+ +|-
120V —/— V- 6A
120107, =5(1, = 15) =0 L _§+5 Q,g) Q
151, =51, = 120 (i) BT‘
Writing current equation for Mesh 2, .
. Fig. 3.382
I, =-6 ...(11)
Solving Eqs (1) and (i1),
10Q
Il = 6 A /\/\/\,
Writing the V., equation, A l
5Q
120101, — Ve, =0 e §
Vi =120-10(6) =60V T
Step Il  Calculation of R, (Fig. 3.383) Fig. 3.383
Ry =10]15=3.33Q
Step III  Calculation of R, 3,'\?;?/8 A
For maximum power transfer,
R; = Ry, =3.33Q
g B 60V — 3.33Q
Step IV Calculation of P (Fig. 3.384)
2 2
nax = 4? = 4(62)33 =270.27 W 7
o EXS Fig. 3.384

" SEINICIERIM  Find the value of resistance R, in Fig. 3.385 for maximum power transfer and

calculate the maximum power.

10Q
AVAYAY
R, Q 3A §259 §6§2
20 V
T
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Solution 100
VW=
Step I  Calculation of V., (Fig. 3.386) A J,+ e .
— : V-
L =3 (D) gon <D3A> §259>§6§2
Applying KVL to Mesh 2, 20V i I -1+ b -
251, —1,) =101, =61, = 0 1
=251, +411, =0 ...(11) Fig. 3.386
Solving Eqs (i) and (ii), 10Q
I,=183A VvV
Writing the V., equation, AO
Rmn — § 25 Q § 6Q
20+ V1, —101, —61, =0 BO
Vin =-20+10(1.83)+6 (1.83) =9.28 V
Step II Calculation of R, (Fig. 3.387)
“‘ Fig. 3.387
R, =25(1(10+6)=9.76 Q
. 9.76 Q
Step III  Calculation of R, NN A
For maximum power transfer,
Ry = Ry =9.76 02 9.28 V —— 9.76 Q
Step IV Calculation of P__ (Fig. 3.388)
2 2
9. B
max — Vin = ( 28) =221W
4R,  4%x9.76 Fig. 3.388

" SETNICRER W Find the value of resistance R, in Fig. 3.389 for maximum power transfer and

calculate maximum power.

10 20 50
AVAVAY AVAVAY AVAVAY,
5y —— Q 1A §1og §39 é/m
Fig. 3.389
Solution
Step I  Calculation of V., (Fig. 3.390)
10 20 50Q
V= VWA AVAVAY. oA
+
+ -
5V — D G 1A) §1OQ ) §39 Vi
oB
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Meshes 1 and 2 will form a supermesh.
Writing the current equation for the supermesh,
-1 =1 ...(1)
Writing the voltage equation for the supermesh,
5-14,-10(1, -13)=0
I, +107, -10/5 =5
Applying KVL to Mesh 3,
-10(l5-1,)-21;-315=0
—107, +1515 =0
Solving Egs (i), (i1) and (iii),

...(il)

...(iii)

I;=038A
I, =138A
I3=092A
Writing the V., equation,
Vin =31, =276 V

Step I  Calculation of R, (Fig. 3.391)

1Q 2Q 5Q
NV AAAY AAAY oA

§1OQ §SQ <~ Ry,

o B

2Q 5Q 5Q
NNV NNV OA AAAY oA

0.91 Q § § 3Q <«— Ry, 1.48 Q § <«— Ry,

o B o B
(b) (c)

Fig. 3.391

R =6.48 Q 6.48 Q

Step III  Calculation of R,
For maximum power transfer,
Ry = R, =6.48Q 276V —— 6.48 Q

Step IV Calculation of P__ (Fig. 3.392)
V4 (2.76) B

= = =029 W
4Ry, 4x6.48 Fig. 3.392

max
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" FEINIIERLEN  For the network shown in Fig. 3.393, find the value of the resistance R, for maxi-

mum power transfer and calculate the maximum power.

20 10 R,
AVA%AY AYA%AY M
2Q
8V — Q 2A Q 3A
6V
T
Fig. 3.393
Solution
Step I Calculation of V., (Fig. 3.394)
2Q 1Q A B
rd VAVAVon arndVAYA Vo o Vin o
2Q
8V —— ) CTDZA (f SA
T
Fig. 3.394
[2—1122 (l)
12:—3A (11)
Solving Eqgs (i), and (ii),
I =5 A 20 10 R,
1= AVA%Y AYA%AY o o—
Writing the V., equation, A l B
§ 20
8—20 -1, -V, —6=0
Vih =8-2(-5)—(-3)-6=15V
Step I  Calculation of R, (Fig. 3.395) Fig. 3.395
RTh =5 Q
Step III  Calculation of R, 50
For maximum power transfer, AN A
RL = RTh = 5 Q
15V — 5Q
Step IV Calculation of P (Fig. 3.396)
Vi (15)° B

=11.25W

T ARy 4x5 Fig. 3.396
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" SEINIER M  For the value of resistance R | in Fig. 3.397 for maximum power transfer and calcu-

late the maximum power-.

15Q R, 18 Q
AAYAY M AAYAY
§ 5Q § 15Q ; 27 Q § 9Q
AVAYAY NV NV
10Q 20 Q 27 Q
I
100V
Fig. 3.397
Solution
Step I  Calculation of V., (Fig. 3.398)
15 Q A B 18 Q
AVAVAY, 2 Vi, © AVAVAY
§ 5Q § 15Q § 27 Q § 9Q
AAYAY AA%AY AAYAY
10Q 20 Q 27 Q
I
100V
Fig. 3.398
By star-delta transformation (Fig. 3.399), A B
° Viho
I= 100 =2.08A 50 90
54+5+20+9+9 50
Writing the V., equation, + - 90
10057 =V, =91 = 0 S0 90
AYAAY
Vin =100—-141 20Q
/
—100—14(2.08) < I
100V

=70.88 V
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Step I  Calculation of R, (Fig. 3.400)

A B
o Brho
5Q 9Q
5Q 9Q
5Q 9Q
AVAVAY,
20 Q
(a)
50 A B 9Q 5Q A B 9Q
—A\N\V\N—>o0 R, ——"VVN—0 R o—AANN— 5Q A B 9Q
—NVW——o R
5Q 90 140 ™
AN\ NV
5Q 20 Q 90 340 AN
AVAYAY NNV AAAY 9.920Q
(b) (c) (d)
Fig. 3.400
Rr, =23.92Q
Step III  Calculation of R, 23.92Q
. AVAVAY: A
For maximum power transfer,
RL = RTh = 2392 Q
70.88V —|— 23.92 Q
Step IV Calculation of P__ (Fig. 3.401)
Vi 70.88)* B
max — Th = ( ) =5251W

" SEINIIEREN  For the value of resistance R | in Fig. 3.402 for maximum power transfer and calcu-

late the maximum power.

5Q

20Q

S,
AVAVAY,
80V—— — 20V
R,
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Solution 50 2A
Step I Calculation of V, (Fig. 3.403) AN @
Applying KVL to Mesh 1, )
80—5I, —10(I, —I,)—20(1; —I;,)—20=0 100 </ _20Q
' - — (L V=
351, =307, =60 (1) AO+
80V—— Vi —_— 20V
Writing the current equation for Mesh 2, l
B —
I =2 .. (i) I
Solving Eqs (1) and (i1), Fig. 3.403
I;=343A 50
Writing the ¥, equation, VVV °©
VTh—20(ll—lz)—2O=O 10Q /2\9\52\/
Vin =20(3.43-2)+20=48.6 V J>A
R
Step I Calculation of R, (Fig. 3.404) TT;
R, =15]/20=8.57Q
Fig. 3.404

Step III  Calculation of R,
. 8.57 Q
For maximum power transfer, AN A

RL = RTh =8.57 Q

Step IV Calculation of P__ (Fig. 3.405) 48.6 V 8.57 Q
Vi, (48.6)° B
nax =4;" =i 8;7=68.9W
T S Fig. 3.405

" SEINNERPM  For the value of resistance R | in Fig. 3.406 for maximum power transfer and calcu-

late the maximum power.

10Q 200Q

100V = %
R,




Solution
Step I Calculation of V., (Fig. 3.407)

_ 100
10+30

= 100 =1.66 A
20+40

1

2

Writing the V., equation,

Vip +10 1, =201, =0
Vi = 201, — 101, = 20(1.66)~10(2.5) = 8.2 V

Step Il Calculation of R, (Fig. 3.408)

Fig. 3.408
Redrawing the network (Fig. 3.409),
A
R, =(10(]30)+ (201 40) = 20.83 Q
Step III  Value of R,
For maximum power transfer,
RL = RTh =20.83 Q
Step IV Calculation of P (Fig. 3.410)
2 2
Prax = Vin = (82) =0.81W

4Ry, 4x20.83

3.5 Maximum Power Transfer Theorem 3.103

100V —/

100 200
B
30 Q 40 Q
Fig. 3.409
20.83 Q
AVAVAY, A
82V —|—— 20.83 Q

Fig. 3.410
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" SEINIEREN  For the value of resistance R | in Fig. 3.411 for maximum power transfer and calcu-

late the maximum power-.

6Q R,
72V — AN
2Q
3Q 4Q
Fig. 3.411

Solution
Step I Calculation of V., (Fig. 3.412)
Applying KVL to Mesh 1,
72—-61,-3(l,-1,)=0 70y ——
915, -3, =72 ...()

Applying KVL to Mesh 2,
—3([2 _Il)_Z‘TZ —4[2 =0

31,491, =0 ...(ii)

Solving Eqs (1) and (i1),
IL=9A
I, =3A
Writing the V., equation,
Vih =61, =21, =0
Vin =61 +21, =6(9)+2(3) =60V

Step Il  Calculation of R, (Fig. 3.413)

y\o 20
6 AV
RTh
<N ] .
AN Q§ ;Q
20 4Q
RTh
3Q 4Q
B
Fig. 3.413

Ry =[(6]13)+2]][4=2Q
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: 2Q
Step 111 . Calculation of R, AN, A
For maximum power transfer,
RL = RTh =2Q
60V —— 2Q

Step IV Calculation of P__ (Fig. 3.414)

2 2 B
Vin _ 0" _ 450w

Prnax =
" 4R 4x2 Fig. 3.414

" SEINNIERLE  For the network shown in Fig. 3.415 find the value of the resistance R, for maximum

power transfer and calculate maximum power.

10Q 2Q
NV AVAVAY
25 A D gsg Q 10A /§7?L §1og —30V
Fig. 3.415
Solution
Step I Calculation of V., (Fig. 3.416)
10Q 2Q
AAYAY NV
Ay

25 A D gsg Q 10A V{;B §109 — 30V

Fig. 3.416

By source transformation, the current source of 25 A and the 5 € resistor is converted into an equivalent
voltage source of 125 V and a series resistor of 5 Q. Also the voltage source of 30 V is connected across the
10 Q resistor. Hence, the 10 € resistor becomes redundant (Fig. 3.417).

10 Q 20
AVAYAY AVAVAY
+lA

5Q

10 A D VTh ——30V §1OQ
_oB
125V T T
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Applying KCL at the node, 10Q 20
pPIYIE AYA%AY l NN\
VTh—125_10+VTh—30:O A
15 50 ; Ry §1o o
B
Vin =58.81V T
Step Il Calculation of R, (Fig. 3.418) Fig. 3.418
R =15(2=1.76 Q l
A
Step III  Value of R, 150 Rrp 0
For maximum power transfer B
R, =Ry, =1.76 Q T
Step IV Calculation of P (Fig. 3.420) Fig. 3.419
1.76 Q
NN\ A
2 2 58.81V— 1.76 Q
max — Vin = (5881) =491.28 W
4R, 4x1.76
B
Fig. 3.420

" SEINIIEREW  For the network shown in Fig. 3.421, find the value of the resistance R, for maxi-

mum power transfer and calculate maximum power.

5Q 12V oo 6V
AA—| AAA—
40 5Q
10V = 1OQ§ /%7%
4 A 8V _|_
Fig. 3.421
Solution
Step I Calculation of V., (Fig. 3.422)
20 1-?V 20 6|V
+/\/\/\/_ k AVAVAY, g _?A
4Q
+
5Q
109§ 4A 10V — R Vin
/
8V
T o B

Fig. 3.422



Applying KVL to the outer path,
10-27/-12-51-8=0

Writing the V., equation,

8+5/+6—Vm, =0

3.5 Maximum Power Transfer Theorem 3.107

10

I=——=-143A
7

Vih =8+6+51=8+6+5(-143)=685V

Step Il Calculation of R, (Fig. 3.423)

Ren = (2[[5)+2
=343Q

Step III  Value of R,

For maximum power transfer,

2Q 2Q

§4Q
§109
O

Q

Step IV Calculation of P (Fig. 3.424)

max

EXAMPLES WITH DEPENDENT SOURCES

© B
Fig. 3.423
3.43 Q
NV oA
RL = RTh = 343 Q
6.85V — ;3.43 Q

2 2

_ Vin _ (6.85) 3 W 5B
4Ry, 4x3.43

Fig. 3.424

" SEINNERLW  For the network shown in Fig. 3.425, find the value of R, for maximum power trans-

fer. Also, calculate maximum power.

20 Q

10/

Y —

40 Q

Fig. 3.425
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Solution

Step I  Calculation of V., (Fig. 3.426)

Applying KVL to the mesh, 20 Q 400
101 —207 —40/ —50=0 Ao+

.. . 10/ 50V
Writing the V., equation, T

Y —

Viy — 401 =50 = 0
Vi —40(=1)=50 = 0 Fig. 3.426
Vop =10 V

/
Step Il Calculation of /,, (Fig. 3.427) >
From Fig. 3.427, f

20 Q

I=1, ..(1) A
Applying KVL to Mesh 1, > In )

107 =201, = 0 10/

10/, -207; =0 ...(i1)
Applying KVL to Mesh 2, Fig. 3.427
—407,-50=0
I, =-125A ...(1i1)

Solving Egs (1), (i1) and (iii),
I, =-0.625 A
Iy =1—-1, =-0.625+1.25=0.625 A
Step 11l  Calculation of R,
_ P 10

= =——=16Q
Ty 0625

Step IV Calculation of R, 16 Q
For maximum power transfer, NV A

RL = RTh = 16 Q
Step V  Calculation of P__ (Fig. 3.428) 10V — 16 Q

2
max — dv = (10) =156 W B
4R, 4xl16 ]
Fig. 3.428

" SEINICIERIE  For the network shown in Fig. 3.429, calculate the maximum power that may be

dissipated in the load resistor R,.

21, 30
-+ A
IX

10 A f) ;49 6Q §HL

Fig. 3.429



Solution
Step I Calculation of V, (Fig. 3.430)
From Fig. 3.430,

For Mesh 1,
I; =10
Applying KVL to Mesh 2,
-4, -1)+2I,-61,=0
45, +41,+21,—-61, =0
41, -81, =0
Solving Egs (ii) and (iii),

]1 = 10 A
I,=5A
Writing the V., equation,
6[2 -0- VTh =0

Vin = 61, =6(5)=30 V

Step I  Calculation of 7, (Fig. 3.431)
From Fig. 3.431,

I, =1, 13
For Mesh 1,

[1:10 ..

Applying KVL to Mesh 2,
A, -L)+21,-6(I, -13)=0
AL +4L+2(I, - 13)-61,+61; =0
A -8, +415=0
Applying KVL to Mesh 3,
—6(I3—1,)=313=0
6/,-915=0
Solving Egs (ii), (ii1) and (iv),
I, =10 A
I,=75A
I3=5A
In=13=5A

3.5 Maximum Power Transfer Theorem 3.109

21

..(i)

X 30
— + AVAVAY: o A
| +
I
() 10A A §4Q D 6Q Vi
o oa® ) Fm )
o B
Fig. 3.430
....(iii)
21, 30
-+ NV A
() b
10 A D ) §4Q ) 6(2) Iy
.(i1) I lp Iy
B
Fig. 3.431
....(iii)
...(1v)
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Step III  Calculation of R, 6Q
NN A
V; 30
Rp=-=""=6Q
Iy 5 30V — 60
Step IV Calculation of R,
For maximum power transfer, B
Ry = R =6 € Fig. 3.432

Step V' Calculation of P_

Vi (30)

= = =375W
ARy 4x16

max

" SETNIIERLW  For the network shown in Fig. 3.433, find the value of R, for maximum power

transfer. Also, find maximum power.

1Q 2 Y
AVAVAY i
A |
1Q
2Vx __F QHL
1A
Fig. 3.433
Solution 10 2 Y
Step I Calculation of 7, (Fig. 3.434) _W\\//h i °A
From Fig. 3.434, x 10
Ve=—=1I=-1 (@) 2w (T v
For Mesh 1, | 1A
Ve=1V
Writing the V., equation, Fig. 3.434
2V, —U+2-V, =0
2()—(-H+2—-V1, =0
VTh = 5 V
Step I  Calculation of /,, (Fig. 3.435) 10 o\
From Fig. 3.435, AN | | A
Vv, =-11, =—I, (D) Ty, T

Meshes 1 and 2 will form a supermesh. oy (* 10 I
Writing the current equation for the supermesh, o A

-5 =1 ...(ii) y 2
Applying KVL to the outer path of the supermesh, 5

2V, -1 +2=0 Fig. 3.435

2(—]1)—]1 +2:O
3L =0 ....(iii)
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Solving Eqs (ii) and (iii),
I, =0.67 A
I, =167 A
Iy=1,=167A
Step III  Calculation of R,
Vrn 5

Rpy=—=—-=3Q

™y 167
Step IV Calculation of R, 30
For maximum power transfer, NNV A

RL = RTh = 3 Q

. . V— 3Q
Step V' Calculation of P__ ( Fig. 3.436) °
Pmax:4;h :—4(1.)32208W B
™o A Fig. 3.436

" SETNIEREN  What will be the value of R, in Fig. 3.437 to get maximum power delivered to it?
What is the value of this power?

05V
- +
+
sa(  Zee Zee 2R
Fig. 3.437
0.5 Vg,
Solution 3 oA
Step I Calculation of V7, (Fig. 3.438) +
By source transformation,
From Fig. 3.438, 3a(d) § o § te Y
Vi =41

. o B

Applying KVL to the mesh,
12-41+0.5Vp, —41 =0 Fg. 3.438
12—V, +0.5 Vayy =V, = 0 05 Vmn
-+ 0 A
VTh = 8 A/ +
4Q
Step I  Calculation of 7, (Fig. 3.439) ) § 4Q Vin
If two terminals 4 and B are shorted, the 4 € resistor gets 12V !
shorted. T -
O

V=0
Fig. 3.439
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Dependent source 0.5 V'depends on the controlling variable . When V= 0, the dependent source vanishes,

ie. 0.5 V=0 as shown in Fig. 3.441.

[N :Z::SA

05V

12V

"

Fig. 3.440
Step III  Calculation of R,

Step IV Calculation of R,
For maximum power transfer,

RL = RTh = 267 Q
Step V' Calculation of P__ (Fig. 3.442)

V2 2
o ®
4Ry, 4x2.67

max

m" RECIPROCITY THEOREM

12V — )
IN

8V —|—— )
I

It states that ‘in a linear, bilateral, active, single source network, the ratio of excitation to response remains
same when the positions of excitation and response are interchanged.’

In other words, it may be stated as ‘if a single voltage
source V_in the branch ‘a’ produces a current /, in the branch
‘b’ then if the voltage source V, is removed and inserted in
the branch ‘4’, it will produce a current /, in branch ‘a’’.

Explanation Consider a network shown in Fig. 3.443.

When the voltage source V is applied at the port 1, it
produces a current / at the port 2. If the positions of the
excitation (source) and response are interchanged, i.e., if
the voltage source is applied at the port 2 then it produces a
current / at the port 1.

The limitation of this theorem is that it is applicable only
to a single-source network. This theorem is not applicable in
the network which has a dependent source. This is applicable
only in linear and bilateral networks. In the reciprocity

4

{ ) Network

Fig. 3.443 Network

/Y

/ Network

:E)V

Fig. 3.444 Network when excitation
and response are
interchanged

theorem, position of any passive element (R, L, C) do not change. Only the excitation and response are

interchanged.
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Steps to be followed in Reciprocity Theorem

1. Identify the branches between which reciprocity is to be established.
2. Find the current in the branch when excitation and response are not interchanged.
3. Find the current in the branch when excitation and response are interchanged.

" ETACIEBMOOR  Calculate current I and verify the reciprocity theorem for the network shown in
Fig. 3.445.

5Q 4Q
AAYAY AAYAY

20V —— §1OQ 6 Q

Fig. 3.445

Solution
Case I Calculation of current / when excitation and /

response are not interchanged (Fig. 3.446) ) §
10 Q
Iy I

Applying KVL to Mesh 1, 20V
20-51,-10(; = 1,)=0 2
157, -101, =20 ...(1)
Applying KVL to Mesh 2,
-10(1, —1,)—-41, -6, =0
-105, +20/, =0 ...(11)
Solving. Egs (i) and (ii),

L =2A
]2 =1A
I=L=1A
Case Il Calculation of current / when excitation and 5Q 40
response are interchanged (Fig. 3.447). Vv Vv 1
Applying KVL to Mesh 1, 1y
/1)

5L -10([; -1;)=0
157, =101, =0 ...(1)
Applying KVL to Mesh 2,
-10(l, - I,)—41,-20-61, =0
-107; +20/, = -20 ...(11)
Solving Eqgs (1) and (ii),

[1 :—1 A
12 =-15A
I=-I,=1A

Since the current / remains the same in both the cases, reciprocity theorem is verified.
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" SEINICERMOEN  Find the current I and verify reciprocity theorem for the network shown in Fig. 3.446.

2Q 2Q
AYA%AY AA%AY
5V — § 3Q § 3Q
40
AYAVAY
/
AVAYAY ~<
4Q
Fig. 3.448
Solution
Case I Calculation of the current / when excitation and 2Q 2Q
response are not interchanged (Fig. 3.449) VVV MV
Applying KVL to Mesh 1, D
—_ 3Q 3Q
5-20 =3I - I,)—4(I, = I3) =0 5V I h §
I =31, -4l = 4Q
9 =31, 413 =5 (1) A,
Applying KVL to Mesh 2, D
—3(12—[1)—2]2—3[2:0 I3 /
s AVAVAY <
=3I, +81, =0 ...(11) 40
Applying KVL to Mesh 3,
e Fig. 3.449
—a\4L3 —[1)—413 = 0
—41,+81;=0 ...(111)
Solving Egs (1), (i1) and (iii),
I, =085A
I, =032 A
;=043 A
I=1=043 A
2Q 2Q

Case II Calculation of current / when excitation and

response are interchanged (Fig. 3.450).
Applying KVL to Mesh 1,

20 -3(L-L)-4L-13)=0
9, =31, -41; =0

Applying KVL to Mesh 2,
=3, -1)-21,-31,=0
-35,+81,=0

Iy

) g, ) g

4Q
...(0) VMV
D)
AN 1
4Q 5V
...(ii)

Fig. 3.450
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Applying KVL to Mesh 3,
—4(I;-1)+5-415=0
—41,+81; =5 ...(111)
Solving Egs (1), (i1) and (iii),

I,=043 A
I,=0.16 A
I;=0.84 A
I=1,=043 A

Since the current / remains the same in both the cases, reciprocity theorem is verified.

" SEINICIENOPR  Find the voltage V and verify reciprocity theorem for the network shown in

Fig. 3.451.
4 Q 20
5Q
AYAYAY
10 A D M
6 Q 8Q
Fig. 3.451
Solution 40
Case I Calculation of the voltage V" when excitation and p ) 2Q
response are not interchanged (Fig. 3.451) 2 50
For Mesh 1
’ AVAVAY
L=10 .G oA D) -yt
Applying KVL to Mesh 2, h 60 I 80
—4(I, - 1)-21,-5(I,-13)=0
45, +111, =515, =0 (ll) Flg 3.452
Applying KVL to Mesh 3,
—6([3 _Il)_5(13 —[2)—8[3 = 0
—61, -5, +191; =0 ...(111)
Solving Eqgs (1), (i1) and (iii),
Il = 10 A
I, =576 A
;=467 A

V=5(,-15)=5(5.76-4.67) =545 V
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Case Il Calculation of voltage ' when excitation and response are interchanged (Fig. 3.453).

O
+
4Q 20
5Q
v A
6 Q 8Q
o
Fig. 3.453

+0

By source transformation (Fig. 3.454),
Applying KVL to Mesh 1,

—46 =21, -50-5(I; -1,)=0
117, =51, =-50 ...(0) %
Applying KVL to Mesh 2,
—61, —=5(1, - 1)+50-81, =0
—5I,+191, =50 ...(ii) o
Solving Egs (i) and (ii), Fig. 3.454
I;=-38A
I, =163 A

From Fig. 3.454,
V+4L+61, =0

V +4(-3.8)+6(1.63)= 0
V=542V

Since the voltage V' is same in both the cases, the reciprocity theorem is verified.

EXA| MiLLMAN’S THEOREM

It states that ‘if there are n voltage sources V;,V,,...,V, with internal resistances R;,R,,..., R, respectively
connected in parallel then these voltage sources can be replaced by a single voltage source V, and a single
series resistance R ,’(Fig. 3.455).

o A A
R1% %Rz... %Hn :> Rm
V1 V. V4 Vm
[ = 1" .

;08

Fig. 3.455 Millman’s network

NG, +v,Gy +...+V,G,
where V=
G +Gy+...+G,
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Exercises

Superposition Theorem

3.1 Find the current through the 10 € resistor in

Fig. 3.490.
10Q 30 Q
AAAY AYA%AY
10A D §59 gzog —— 100V
Fig. 3.490
[0.37 A]
3.2 Find the current through the 8 Q2 resistor in
Fig. 3.491.
8Q
N\
5A<D §129 §SOQ DzsA
Fig. 3.491
[16.2 A]
3.3 Find the potential across the 3 € resistor in
Fig. 3.492.
9Q
15 A
AVAVAY,
7Q 5Q
2Q 5A 30
I
4V
Fig. 3.492

[3.3V]

3.4 Calculate the current through the 10 Q
resistor in Fig. 3.493.

10 Q
NV
NV NV
4 Q 2Q
25v () § 7Q G 12V
AAAY NV
2Q 3Q
Fig. 3.493
[1.62 A]
3.5 Find the current through the 1Q resistor in
Fig. 3.494.
2Q
AAYAY
1Q
1A () 8¢ 20 §
g
AVAVAY
2Q
Fig. 3.494
[0.41A]
3.6 Find the current through the 4 Q resistor in
Fig. 3.495.
4 Q 10V
A 1
AA%Y NV
2Q 2Q




3.7 Find the current /_in Fig. 3.496.

j, 50 20 Q
—\ N\, AYAAY;
24\ — 2A<f> 20Q —_— 36V
Fig. 3.496
[-1.143 A]
3.8 Find the voltage V_in Fig. 3.497.
2Q 4Q
AAYAY VA
VX
50V —— oy, —100 V
Fig. 3.497
[-38.5V]
3.9 Determine the voltages V', and V, in Fig.
3.498.
AAAY, AYA%AY < M/\/l
10 A D %? 0.5V, <> 0.25/, T 20V
Fig. 3.498
[6V,12V]
3.10 Find the voltage V_in Fig. 3.499.
10Q 6°| v
; AVA%AY 1|
+
4AQ 200 3°Q§VX $yo4,
Fig. 3.499
[7.5V]

Thevenin’s Theorem

3.11 Find the current through the 5 Q resistor in
Fig. 3.500.

Exercises 3.129

10Q 50V 2q
AAYAY; I

Ssa

Fig. 3.500

50V
|

Se0

100V —

Saa

[3.87 A]
3.12 Find the current through the 6 € resistor in
Fig. 3.501.

4V 40Q

Q 2A gsg §69

Fig. 3.501
[1.26 A]
3.13 Find the current through the 6 € resistor in
Fig. 3.502.
10V o
| A

4A<D 5109 gsg Q 3A §GQ

Fig. 3.502
[2.04 A]

3.14 Find the current through the 2 Q resistor
connected between terminals 4 and B in Fig.

3.503.
o 12V o 6V A
f NN—
4Q 5Q
10V —=— §1OQ 2Q
4 A 8V
1
B
Fig. 3.503
[1.26 A]
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3.15 Find the current through the 5 Q resistor in

Fig. 3.504.
5Q

AA%AY

100V

1

—,—_ 4V 2ov£ 30V
gzog%(m 79% —__—50\%4Q

|——W\
20V 10Q
Fig. 3.504
[4.67 A]
3.16 Find the current through the 20 Q resistor in
Fig. 3.505.
15Q 40 Q 21 Q
AAAY AAAY A%
§SQ §1SQ §36£2 §1SQ
NV NV NV
7Q 20 Q 36 Q
|\
||
100V
Fig. 3.505
[1.54 A]

3.17 Calculate the current through the 10 Q

resistor in Fig. 3.506.
10Q

<+ 12V

2Q 3Q

Fig. 3.506

[1.62 A]

3.18 Determine Thevenin’s equivalent network
for figures 3.507 to 3.510 shown below.

10V 4V,
|
|

6 Q

4A
O
Fig. 3.507
[-58 V.12Q]
(ii)
I, 100 Q
—>— AN/ O
10V =/
V, 9l § 100 Q
O
Fig. 3.508
[9.09V,9.09 Q|
(iii)
0.5V,
-+ o)
+
sa () 4Q§ §4Q v,
o
Fig. 3.509
[8 V,2.66 Q]
(iv)
3Q 5Q
%Y AN o

N
o)
AVAYAY,

><< +
-
o

>
>
IS

Fig. 3.510
[150 V,20 Q]



3.19 Find the current /_in Fig. 3.511.
l, 5Q 2Q

101, 4a(}) s@ NAN_]—

1a(h) 10V
|

Fig. 3.511
[4A]

3.20 Find the current in the 24 Q resistor in Fig.
3.512.

1, 1000
> AA——

+

+
4 13Q §Z4Q
48V T 3V, 101, ( ;%

Fig. 3.512
[0.225 A ]

Norton’s Theorem

3.21 Find the current through the 10 Q resistor in
Fig. 3.513.

6Q 2V 400 5Q

[ — ]

Fig. 3.513

20V

[0.68 A]
3.22 Find the current through the 20 € resistor in
Fig. 3.514.

10 Q
AYAAY

20Q 5Q
AAAY AAAY

O

10V =

[0.61A]

Exercises 3.131

3.23 Find the current through the 2 Q resistor in
Fig. 3.515.

a ()

20V
Fig. 3.515
[5A]
3.24 Find the current through the 5 Q resistor in
Fig. 3.516.
30 6Q 6Q
AAYAY Ay
-
6 A ;5 Q 10Q 2 A ;3 Q
[ AN
10V 2Q 4Q
Fig. 3.516
[4.13A]

3.25 Find Norton’s equivalent circuit for the
portion of network shown in Fig. 3.517 to the
left of ab. Hence obtain the current in the 10
Q resistor.

D

9Q
§6Q §1OQ

12V

~
<
—
N
o)
_e
00}
>
LT o S
o
—

Fig. 3.517
[0.053 A]

3.26 Find Norton’s equivalent network and hence
find the current in the 10 Q resistor in Fig.
3.518.
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2V

20 30 3.30 Find the value of the resistance R, in Fig. 3.522
—{ EAVAVAV ; NV for maximum power transfer and calculate the
! maximum power.
3Q 21 § 10 Q
§ T 1 8 A
&)
N oA
Fig. 3.518 -
ANA— ~ L
[0.25A] |
) , . . 4Q 4vreQ VvV
3.27 Find Norton’s equivalent network In Fig. 20
3.519.
20 20 1 A
W 2viiq 20
+ ¢ o
12V }, 89§V1 81, 0.1 v, 200 %
° Fig. 3.522
Fig. 3.519 [2.182,29.35 W]
[0'533 A, 31 Q] 3.31 Find the value of the resistance R, in Fig. 3.523
Maximum Power Transfer Theorem for maximum power transfer and calculate the
maximum power.
3.28 Find the value of the resistance R, in Fig. 3.520
for maximum power transfer and calculate the 3Q
maximum power. VWV
30 10 2Q
AN AN Dea S0 R,
3V T
6V §29 §1Q (1) 2A gjm AN
Fig. 3.523
Fig. 3.520 [3€,2.52 W]

[1.75€,1.29 W]

3.32 Findthe value of the resistance R, in Fig. 3.524
3.29 Find the value of the resistance R, in Fig. 3.521

for maximum power transfer and calculate the
for maximum power transfer and calculate the maximum power.
maximum power.

10 Q 2Q
A% NV
3Q 6 Q
90 25 A(}) 5o (MDioa A 10Q —30A
110V —(— AN/
AL 30 Fig. 3.524
[1.76 ©,490.187 W]
Fig. 3.521

[2.36 ©,940 W]
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Objective-Type Questions 3.133

3.1 The value of'the resistance R connected across
the terminals 4 and B in Fig. 3.525, which
will absorb the maximum power is

3kQ 4kQ
R
V— A AVAVAY, B
6 ko 4kQ
Fig. 3.525
(a) 4kQ (b) 4.11kQ
(c) 8kQ d 9kQ

3.2 Superposition theorem is not applicable to
networks containing

(a) nonlinear elements

(b) dependent voltage source
(c) dependent current source
(d) transformers

3.3 The value of R required for maximum power
transfer in the network shown in Fig. 3.526 is

5Q 40
VVV

25V —— 20 Q

Q 3A R

NNV

Fig. 3.526

(A 2Q (b) 4Q (¢) 8Q (d 16Q
3.4 In the network of Fig. 3.527, the maximum
power is delivered to R, if its value is

40 Q
0.5/, T gzog §RL
T 50V
Fig. 3.527
a) 16Q (b) 43—09
c) 60Q d 2090

3.5 The maximum power that can be transferred
to the load R, from the voltage source in Fig.

3.528 is
100 Q
A%
10V —/— § R,
Fig. 3.528
(@ 1W (b) 10W
(c) 025W (d 05W

3.6 Forthecircuitshownin Fig.3.529, Thevenin’s
voltage and Thevenin’s equivalent resistance
at terminals a-b is

1A

al 5Q
0.5/ 50 — 10V
b
Fig. 3.529
(@ 5Vand2Q (b) 7.5Vand2.5Q

(c) 4Vand2Q (d 3Vand25Q

3.7 The value of R, in Fig. 3.530 for maximum
power transfer is

9Q
NV

6 Q 6 Q
NNV

§GQQD1A ;99%

Fig. 3.530

(b) 1.125Q
(d) none of these

2v(O)

) 3Q
() 4.1785Q



Network Theorems
(Application to ac

Circuits)

X8| inTRODUCTION

We have discussed the network theorems with reference to resistive load and dc sources. Now, all the
theorems will be discussed when a network consists of ac sources, resistors, inductors and capacitors. All the
theorems are also valid for ac sources.

XX MesH ANALysis

Mesh analysis is useful if a network has a large number of voltage sources. In this method, currents are
assigned in each mesh. We can write mesh equations by Kirchhoff’s voltage law in terms of unknown mesh
currents,

|| EINNI NN Find mesh currents I, and 1, in the network of Fig. 6.1.

) — 100
I2

30 jaQ

+
1002£45° V r\) j10Q

I

Fig. 6.1

Solution Applying KVL to Mesh 1,
100245 = (3 + /4L, — j10(I, - L) =0

(3 +/j14)I, —j10L, =100 £45° ..(1)
Applying KVL to Mesh 2,
—10(L, - 1,)+,;10(1,)=0
J10L,=0 ...(11)
I,=0
Substituting I, in Eq. (i),
—j10I, =100£45°
I, = M =10£135° A

—j10



6.2 Network Analysis and Synthesis

" Example WA Find mesh current I, 1, and I, in the network of Fig. 6.

50 —/'2|Q j5Q

Fig. 6.2

Solution  Applying KVL to Mesh 1,
10 £30°=(5—,;2)1, -3, -1)=0
(8-j2)I, - 3L, = 10£30
Applying KVL to Mesh 2,
-3, -1)-;5L,-5(1,-1,)=0
3L+ @ +/5L,-5L,=0
Applying KVL to Mesh 3,
SEL-L)-2-2),=0
=SL+(7-/2),=0
Writing Eqgs (1), (ii) and (iii),

2.

—AA— | ro00
I D S22 ) Zon ) %ZQ
2 T

o

.. ()

.. (i)

..., (iii)

8-j2 3 0 I 10£30°

-3 8+j5 -5 ||LL|= 0
0 -5 T7-j2|| L5 0
By Cramer’s rule,
10£30° -3 0
0 8+j5 5
0 -5 7-j2

I, = - =1.434£38.7° A
8—j2 3 0
-3 8+j5 5
0 -5 T7-j2
8—j2 10£30° 0
-3 0 -5
0 0 7-2
I, = =0.693£-22°A

8—j2 -3 0
-3 845 -5
0 5 1-2

8—j2 -3 10£30°
3 845 0
0 -5 0
I = : =0.476.13.8° A
8—j2 -3 0
-3 845 -5
0 -5 7-2




6.2 Mesh Analysis 6.3

" S EINI IR /i the network of Fig. 6.3, find the value of 'V, so that the current through (2 + j3) ohm

impedance is zero.

5Q 20 3Q 40
—AAA— T

D) )

Fig. 6.3

30£0°V

Solution Applying KVL to Mesh 1,
30£0° - 51, —j5(1, - 1) =0

(5 +j51, —j51,=30 £0° (1)
Applying KVL to Mesh 2,
-5, -1)-2+,3)L,-6(,-1,)=0
751, + (8 +;8) L, — 61, =0 ...(i1)
Applying KVL to Mesh 3,

—6(I,-1,)—-4L,-V,=0
—-6L,+ 10L,=-V, ...(1i1)
Writing Eqgs (1), (i1) and (ii1) in matrix form,
545 —j5 o|ln] [30z0°
-j5 848 —6|| L |=
0 -6 10|15

o
|
S

By Cramer’s rule,
5+j5 30«£0° 0
—-Jj5 0 -6

0 -V, 10
I, = : . =0
545 —=j5 0
—j5 8+j8 -6
0 -6 10
(5+j5)(=6V2)—(30)(-/50)=0
v, = 100 556 450y
30+ /30

" DTGNS Find the value of the current I, in the network shown in Fig. 6.4.
40 10430°V
-

+

20.£0°V (r\); ) j10Q ) 20Q
- I I

10Q 4Q _jaq
|3>

20 Q
Fig. 6.4

4Q




6.4 Network Analysis and Synthesis

Solution Applying KVL to Mesh 1,
20£0° - (4 —j4)T, —j10(1, = L) = 10(I, = 1,) = 0

(14 +;6)1, —j101, — 10L,= 20 L0 .. (1)
Applying KVL to Mesh 2,
—10(I, - 1) —10£30" = 20L, - (4 —j4) (1, - 1,)=0
101, + (24 +j6) I, — (4 — j4) I, =-10£30° ... (i)
Applying KVL to Mesh 3,

=10, -1) -4 -4, -1,)-200,=0
=10l - (4 —jHL,+ (34— 9L, =0 ... (iii)
Writing Eqgs (i), (ii) and (iii) in matrix form,

14+ 6  —j10 -10 I, | 20£0°
—j10 24+ j6 —(4—jd||1, |=]|-10230°
-10  —(4-j4) 34-j4 ||1; 0

By Cramer’s rule,

14+ j6  —j10 20£0°
—-j10 24+ 6 —-10£30°
-10  —(4-j4) 0

I; = =0442£-14° A

14+ j6 -10 -10
—j10  24+j6 —(4-j4)
-10 —(4—j4) 34-j4

" S EINI RN Find the voltage V,, in the network of Fig. 6.5.

10 150Q 100 Q

D

Tw»—fme

100 Q 4Q j200Q
96 Q )

{0
10£0°V

W >

Fig. 6.5

Solution Applying KVL to Mesh 1,
-96 1, —(100+4 +,200) (I, - 1)+ 10 £0°=0
(200 +,200) I, — (104 +;200) I, = 10 £0° ..(1)
Applying KVL to Mesh 2,
—(1-,/50-100) I, - (100 + 4 +;200) (I, —=1,)=0
— (104 +;200) I, + (205 +150) L,=0 ...(ii)
Writing Egs (i) and (ii) in matrix form,

200+ j200  —(104+ ;200)][ 1, ] [102£0°
—(104+ j200) 205+ 150 ||L,| | O



6.2 Mesh Analysis
By Cramer’s rule,

‘10400 —(104+ j200)

0 205+ /150
200+ j200  —(104+ j200)

—(104+ j200) 205+ ;150
200+ j200  10.£0°
—(104+ j200) 0
200+ j200  —(104+ ;200)

—(104+ j200) 205+ j150

V,z =100I, — (4 + j200)(I, —I,)

=100(0.045.£26.34°) — (4 + j200)(0.051.£2.72x107> ° = 0.045.£26.34°)

=0.058 £-92.65° V

=0.051£2.72x107°A

=0.045£26.34° A

" SENICNHW  For the network shown in Fig. 6.6, find the voltage across the capacitor.

LY L

_j2 0
3o b

+
5.0°V @

1Q

%ﬂﬂ

AYAYAY

Fig. 6.6

Solution  Applying KVL to Mesh 1,
50°-(1+ 21, -2(L, - 1) -1+ j3)(I; -13)=0
4+ 75 -2I, —(1+ j3)I; =5£0°
Applying KVL to Mesh 2,
2L -5)-3>+j2(I1, -13)=0
2L +(5-2)1, + j2I3 =0
Applying KVL to Mesh 3,
-1+ /3L -LI)+/2( -L)-(1+ /DI =0
-1+ 3+ j2I, +(2+ j2)I; =0 .
Writing Eqgs (1), (i1) and (iii) in matrix form,
4+ j5 -2 -1+ L 520°
-2 5-2 j2 L[=] O
—-(1+3) j2 24+ 2 || 15 0

6.5

...()

..(ii)

. (iii)



6.6 Network Analysis and Synthesis

By Cramer’s rule,

4+j5 5£0° —(1+/3)

2 0 2
—A+/3) 0 24,2

) I | 0.65,130.51° A
4+ j5 -2 -1+ 3)

2 s5-j52 5
_(1+/3) j2  2+j2
445 =2 5.0°
2 5.2 0
—d+3) 2 0
=4t J =0.91/-2151°A
4+j5 -2 —(1+/3)
2 5-j2 )2
—[A+3) 52 2+ ;2
V, = (=j2)(1s —1y) = (- j2)(0.91/-21.51°—0.65/130.51°) = 3.03/~123.12° V

" SEINICNWA  Find the voltage across the 2 2 resistor in the network of Fig. 6.7.

3Q Ao
AVAVAY, 000
2Q +
2/30°A D ,) ,> @ 8.,45°V
Iy _pa " -
Fig. 6.7
Solution For Mesh 1,
I, = 2/30° ...(0)

Applying KVL to Mesh 2,

—(2-j2)(I; -1;)— jlI, -8£45°=0
(2-j2)I, - (2- j1I, =8£45° ...(ii)
Substituting I, in Eq. (i),

(2-72)(24£30°) = (2— jDI, =8£45°

| —(8£45°)+(2— j2)(2£30°)
- 2-j1

Vag =2(L —1,)=2(2£30°=3.19£ - 65°) = 7.82./84.37° V

I =3.19/-65° A




6.2 Mesh Analysis 6.7

" SEINICNRI  Find the current through 3 Q2 resistor in the network of Fig. 6.8.

3Q 5Q
AVAYAY
2Q
10 1£0°A §j1 o)
L) g @)
Fig. 6.8

Solution  Applying KVL to Mesh 1,
10£0° - 721, =31, - 1(I; -1,)=0
4+ ;)1 -1, =10£0° ..(1)
Meshes 2 and 3 will form a supermesh.
Writing current equation for the supermesh,
13 —12 :1400 (11)
Applying KVL to the outer path of the supermesh,
—1(T, —1;)-5I; — jlI; =0
11—12—(5+j1)13 =0 (111)
Writing Eqgs (i), (ii) and (iii) in matrix form,
4+ 2 -1 0 I, 10£0°
0 -1 1 I, [=| 1£0°
1 -1 -5+ |15 0

—_—

By Cramer’s rule,
10£0° -1 0
1£0° -1 1
0 -1 =5+ /1)

I = =2.11£-28.01° A
4+ 72 -1
0 -1 1
1 -1 —(5+/1)

Tig=1=2.112/-2801°A

" SEINICNRR  Find the currents I, and 1, in the network of Fig. 6.9.

60 2v,
MV t

+
+
0.0°v () D V, == 3 QD §39
- | - |

2




6.8 Network Analysis and Synthesis

Solution From Fig. 6.9,

V,=-730,-1)

Applying KVL to Mesh 1,
920°-61; + j3(I,; -1,)=0
(6—-j3)I; + 731, =9£0°
Applying KVL to Mesh 2,
Jj3({I, -I;)+2V, =31, =0
j31, = 3L +2[—j3(1, -1,)]-31, =0
JOL+3-j9I, =0

Writing Egs (ii) and (iii) in matrix form,
6-j3 j3 |[L|_[9£0°
j9  3-j9|L| | 0

‘940"

By Cramer’s rule,

0 3-/9

11:
6— ;3
j9 3

jo

6 j3
j9 3

12:

" SENII KW Find the voltage across the 4 Qresistor in the network of Fig. 6.10.

j3

’ —1.3.2.49° A
i3 ‘

-Jj9
‘6— j3 9.£0°

=l _124,-1595° A
i3 ‘

_]9

6.£30°V ;
j2 Q
AN T
[ N iy
X _/1 Q
21,
I1 |2
Fig. 6.10

Solution From Fig. 6.10,
Ix = Il
Applying KVL to Mesh 1,

2L +6£30°+ jI(I; -1,)-21, =0
=21, + 6 £30°+ j1I; — jlI, =21, =0

(4— iDL, + jlI, = 6.£30°

...()

..(ii)

... (i)

...

...(ii)



6.3 Node Analysis 6.9

Applying KVL to Mesh 2,
21+ j1(I, - 1) — j21, 41, =0
21, + jlI, = j11; — j21, - 41, =0
2-/DL =(4+/DL =0 ..(iii)

Writing Eqs (i1) and (ii1) in matrix form,
4-j1 Jjl I | [6£30°
2—71 -4+ H||L| | o

‘4 —jl 6£30°

By Cramer’s rule,

2—j1 0
I, = - . =0.74/-291° A
4-j1 Jjl
2—j1 —(4+ 1)

Vig =41, = 4(0.74£-2.91°) = 2.96 /- 2.91° V

XN | ~noDE AnALYsIS

Node analysis uses Kirchhoff’s current law for finding currents and voltages in a network. For ac networks,
Kirchhoff’s current law states that the phasor sum of currents meeting at a point is equal to zero.

" DEINTJCAMEN /1 the network shown in Fig. 6.11, determine V and V.

j6Q v, 3a v, j5Q

10£0°V

Solution Applying KCL at Node a,
Vo =10£20° V,  Vi=Vi

=0
j6 —j6 3
I 1 1 1 10£0°
e L Va ——Vb =
jo j6 3 3 j6
0.33V, —0.33V, =1.67£-90° ..()
Applying KCL at Node b,
Vb _Va +&+&: 0
3 j4 1
1
— =Nk l+i+i V, =0
3 3 74 1

~0.33V, +(0.33— j1.25)V, =0 ..(ii)



6.10 Network Analysis and Synthesis
Adding Eqgs (i) and (i1),
—j1.25V, =1.674-90°
_ 1.67/-90°
—j1.25

g =1.3420°V

Substituting V, in Eq. (i),

0.33V, —0.33(1.34£0°) =1.67£-90°
_L.73£75.17°
033

=5.24,-7517°V

a

" D EIWJCAMYR  For the network shown in Fig. 6.12, find the voltages V, and V,
5Q v, 4Q v, 2Q

50£0°V 50£90° V

Applying KCL at Node 1,
V,-50£0° V; V-V,
—_  +—+——==
5 j2 4

0

1 1 1 1
—+—+— Vl——VZZIOZOO
572 4 4

(0.45—- 0.5V, —0.25V, =10£0°
Applying KCL at Node 2,
V _ _ [e]
2, =V N Vv, +V2 50490 _
4 -2 2

0

1 1 1 1

——Vi+| —+——=+—= |V, =25290°
4 4 —j2 2

—0.25V; +(0.75+ j0.5)V, = 25£90°

Writing Egs (1) and (ii) in matrix form,
0.45- ;0.5 —-0.25 Vi | | 10£0°
—-0.25 0.75+ 0.5 || Vo | |25£90°
By Cramer’s rule,
10£0° —0.25
j25  0.75+ 0.5
V) = - =24.7/72.25°V
0.45- 0.5 -0.25
—-0.25 0.75+ 0.5

0.45-;0.5 10£0°
-0.25 25290°

’0.45 -j0.5  —0.25 ‘

V, = =34.34.52.82°V

—025  0.75+ j0.5

...()

..(i)



6.3 Node Analysis

" BEINIECNER  Find the voltage V ,, in the network of Fig. 6.13.

j5Q
2Q o000
—VW—A j10Q —
00
1=10,0° A ——¢1 —»'T
ANN———T00
3Q j4Q
Fig. 6.13
Solution Applying KCL at Node 1,
tosoo=Y1"Y2, Vi
2 3+/4
1 1 1
V,——=V, =10£0°
2 3+ j4 + j4 2
(0.62-;0.16)V, —0.5V, =10£0°
Applying KCL at Node 2,
V, -V, Vz Vo
2 j5 ]10
1 1 1 1
——=Vi+|[=+—+— (V2 =0
2 2 j5 jl1o

—0.5V, +(0.5— j0.3)V, = 0

Writing Egs (1) and (i1) in matrix form,
0.62-0.16 -0.5 Vi | |10£0°
-0.5 0.5-,03|[V,| | ©

10£0°  -0.5
0 05-;03

By Cramer’s rule,

_ ‘ =21.8256.42°V
‘0.62—]0.16 0.5 ’

0.5 0.5-;0.3
0.62—0.16 10£0°
0.5 0
V= :
0.62—-;0.16 -0.5
0.5 0.5-;0.3
V= V2 =18.7£87.42°V
21.8£56.42°
(j4) = &( 14)=17.45293.32° V
3+ 4 3+j4

Vi =V, — Vg =(18.7287.42°)— (17.45.93.32°) = 2.23./34.1° V

=18.74£87.42° V

Vi =

6.11

...()

...(ii)



6.12 Network Analysis and Synthesis

" SEINICNWER  Find the node voltages V,and V,in the network of Fig. 6.14.

v, e v,
| |

20 § oV, 2 Q D 2./30° A

Fig. 6.14

Solution Applying KCL at Node 1,
Vi V-V
2 -1

1 1 1
—+— Vl_ 2—f V2:0
2 —j1 Jjl

05+ /HVi—(2+ 1)V, =0 ...(1)
Applying KCL at Node 2,
- V2
-1 j2
1 (1 1)
fV] +l—_+_—JV2 =2/30°
J1 -1 j2
—j1Vy+ 0.5V, =2/30° ...(i1)

=2/30°

Writing Egs (1) and (i1) in matrix form,

05+1 -2+, n][vi] [ o
—j1 jO.5 ||V, | |2«£30°

By Cramer’s rule,

0 -2+ j1
2/30° j0.5
vV, = , — =2.46/130.62° V
0.5+,1 =2+
—Jjl1 j0.5
0.5+ /1 0
-j1 2/30°
Vv, = ‘ — =1.23/167.49°V
0.5+,1 -2+
—jl j0.5

" EINAXWEW [ the network of Fig 6.15, find the voltage V, which results in zero current through

4 2 resistor.
5V, 4Q V; 2Q

+
50.0°V r\)




6.3 Node Analysis

Solution Applying KCL at Node 1,
V;=50£0° V, V,—V;
—_  t—+———=
5 2 4
l+L+l V1—1V3 =10£0°
5 2 4 4
(0.45— j0.5)V; —0.25V; = 10.£0°

0

Applying KCL at Node 3,

V3—V1+ V; +V3—V2=
4 2 2

0

1 1 1 1
=V +| =+—+=|V3=0.5V,
4 4 —j2 2

—0.25V; +(0.75+ j0.5) V3 = 0.5V,
Writing Egs (i) and (ii) in matrix form,
0.45- 0.5 -0.25 Vi | [10£0°
[ —0.25 0.75+ j0.5:|[V3:| B [O.SVz ]

By Cramer’s rule,

10£0° -0.25
0.5V, 0.75+ 0.5  10(0.75+ j0.5)+0.125 V,

'710.45-j05 025 0.55/—15.95°
025 075+ /0.5

‘0.45—_,‘ 0.5 10£0°

Vi o 025 0.5V;| _0.5V,(045-,05)+25

; ‘0.45—]0.5 -0.25 ’ 0.55/ -15.95°
025  0.75+ 0.5
Vi —-V;
Lig=———=0
Vi=V;
10(0.75+ j0.5) +0.125V, _ 0.5V,(0.45— j0.5)+2.5
0.55/-15.95° 0.55£-15.95°

7.540.125V, — j 5=2.5+0.225V, — j0.25V,
5+ j5=V,(0.1- j0.25)

,=—F P 962611320V
0.1-,0.25
" SEININWEN  Find the voltage across the capacitor in the network of Fig. 6.16.
12/30°V
AR
e
2/60° A (D 1 Q 2Q  TT20Q

Fig. 6.16

6.13

...()

..(ii)



6.14 Network Analysis and Synthesis

Solution Nodes 1 and 2 will form a supernode.
Writing the voltage equation for the supernode,

V-V, =12/30° (1)
Applying KCL to the supernode,
Wi + V2 + V2 =2.260°
jl 2 =52
(—/DVi+(0.5+ j0.5)V, = 2260° ...(1)

Writing Egs (i) and (ii) in matrix form,

1 ~1 Vi1 [12£30°
—ji1 0.5+j0.5||V,| | 2£60°

By Cramer’s rule,

1 12£30°
—j1  2£60°
Vo= =18.55/157.42° V
‘—jl 0.5+j0.5‘

V.=V, =18.55£157.42° V

XN suPERPOSITION THEOREM

The superposition theorem can be used to analyse an ac network containing more than one source. The
superposition theorem states that in a network containing more than one voltage source or current source,
the total current or voltage in any branch of the network is the phasor sum of currents or voltages produced
in that branch by each source acting separately. As each source is considered, all of the other sources are
replaced by their internal impedances. This theorem is valid only for linear systems.

" SETGICEICRYE  Find the current through the 3 + j4 ohm impedance.

5Q j5Q
NN
. 30 ~
50£90°V f\) 50«£0°V
- j4 Q +
Fig. 6.17
Solution 50 50
Step I When the 50 £90° V source is acting alone (Fig. 6.18) MWV r
GB+/905) o ) 30
7y :5+W:6354232 Q 50.,90° V@
. - j4 Q
T = _S0£907 =7.87£66.8° A
6.35£23.2°

Fig. 6.18



By current division rule,
Jj5

6.4 Superposition Theorem 6.15

I'= (7.87466.8")(—) =4.15,85.3° A(l)

3+ /9

Step II When the 50£0° V source is acting alone (Fig. 6.19)
4
N 53+ j4)

Z; = — 6.74.£68.2°
TP e
4 (e}
p =0 s g2
6.74.268.2°

By current division rule,

5

5Q j5Q
M
30 B
Q
50.,0°V
jaQ +
A
Fig. 6.19

1”7 =(7.42/- 68.2°)(8—} =4.152-94.77° A(T)=4.152853° A({)

+ j4

Step III By superposition theorem,

I=1'+1"=4.15 /853°+4.15 £85.3°=8.31 £85.3°A ({)

" SEITICRER  Determine the voltage across the (2 + j5) ohm impedance for the network shown in

Q 20/30° A

Fig.6.20.
j4 Q /3 Q
AN ||
+ 20
5020V ()
- j5Q
Fig. 6.20
Solution

Step I When the 50£0° V source is acting alone (Fig. 6.21)

50£0°

=————=542/-7747° A
2+ j4+j5

Voltage cross (2 +j5) Q impedance
V' = (2+4/5) (542 £-77.47°)=29.16 £—9.28° V
Step I When the 20£30° A source is acting alone (Fig. 6.22)
By current division rule,

4
I= (204300)(]—‘) =8.68£42.53° A
2+ 59

Voltage across (2 +;5) Q impedance
V7= (2+/5) (8.68 £42.53°) =46.69 £110.72° V

-j3 O

j4Q

50£0°V

Q 20./30° A

j5Q

Fig. 6.22



6.16 Network Analysis and Synthesis

Step III By superposition theorem,
V=V +V”’"=29.16 £-9.28° + 46.69 £110.72° =40.85 £72.53° V

" S EINICCHER  Determine the voltage V., for the network shown in Fig. 6.23.

j5 Q
A /2 QQ 420° A

50£0°V 5Q

Solution
Step I When the 50£0° V source is acting alone (Fig. 6.24)

——j2 Q

50/0°V

Fig. 6.24
Vs =5020°V

Step I When the 420° A source is acting alone (Fig. 6.25)
j5 Q
A —j2Q D 4,0°A
5Q
'B
Fig. 6.25

V;BZO

Step III By superposition theorem,
Vs =Vig+Vg =5020°+0=5020°V



6.4 Superposition Theorem 6.17

" SETNIECWON  Find the current I in the network shown in Fig. 6.26.

| 40 /3 Q ‘f5||9 20
> VVV W ||

+ +
13 £25°V r\) Q 3 £50° A 20 £-30°V
Fig. 6.26
Solution
Step I When the 13.£25° V source is acting alone (Fig. 6.27)
40 3 Q —j5 Q 20
ANA—TT /]
+
13 £25°V f\) D
— II
Fig. 6.27
4 o
I'= 13 %5 =2.057£43.43° A (>)
6—j2

Step I When the 20£-30° V source is acting alone (Fig. 6.28)

40  BQ e 29
NNN—T000 ]
—+
C 20 £-30°V
I// -
Fig. 6.28

[ 20£-30°V

=316 -11.57° A() =3.16£168.43° A( )
~J

Step III  'When the 3£50° A source is acting alone (Fig. 6.29)

40 30 B2 g
—VWA—=000 11

Q 3 /50° A




6.18 Network Analysis and Synthesis

By current division rule,

2-J5
6—j2
Step IV By superposition theorem,

I=1+1"+1" =2.057 £43.13° + 3.16 £168.43° + 2.56 £-179.77° A=4.62 £153.99° A (—)

1”7 =3/50°%

=2.56.£0.23° A(«)=2.56£—179.77° A(— )

" Example WM Find the current through the j3 2 reactance in the network of Fig 6.30.

—j5 Q
| |
|1
+ +
5/30°V @ 2 Q §f5 Q 9 10.£60° V
7000
i3 Q
Fig. 6.30
Solution
Step I When the 5£30° V source is acting alone (Fig. 6.31)

-5 Q
[
1]

+
5./30° v@ —j2Q g j5 Q

500
3 Q

Fig. 6.31

When a short circuit is placed across j15 € reactance, it gets shorted as shown in Fig 6.32.

| ]
[

>
>

+
5./30°V @ ——_jpQ

j3 Q

Fig. 6.32

£30°
=23 55 000 Ace)
—j5+j3



6.4 Superposition Theorem 6.19

Step I When the 10£60° V source is acting alone (Fig. 6.33)
-5 Q
| |
|

+
—-j2Q g j5 Q @ 10.,60° V

7000
j3 Q
Fig. 6.33
When a short circuit is placed across the —j2 € reactance, it gets shorted as shown in Fig. 6.34
-5 Q %
| | <
I D
+
%/5 Q r\) 10.£60° V
7000
j3 Q
Fig. 6.34
10£60°
I"=———=5Z150°A(—)=5£-30° A («)
—-j5+j3

Step III By superposition theorem,
I=1T+1"=252120°+5/-30°=3.1£-621°A (<)

" SEINI NI  Find the current 1, in the network of Fig. 6.35.

2/0°A
©
—-j2 Q 6 Q
I || AN
+
8 Q 3149 6) 10£30° A
Fig. 6.35
Solution _j|2|Q 6Q It
. ) . K I VYV
Step I 'When the 10£30° V source is acting alone (Fig. 6.36) 0 +
ZT=6+M=8A64424.1209 8 Q §f49 @10430°v
ja4+8— ;2 !
10£30°
p =080 6 5880 A
8.64.,24.12°

Fig. 6.36



6.20 Network Analysis and Synthesis

By current division rule,

i4
1) =1.16£588°x—21 " =056,81.84°A (1)
§— j2+ j4

Step I When the 220° A source is acting alone (Fig. 6.37)

2/0°A
©
|(’)’ | I Vv
8 Q % j4 Q
Fig. 6.37
The network can be redrawn as shown in Fig. 6.38.
-2 Q -2 Q

| | | |
’” II

o

8Q gjﬂ! §GQ <D240°A 8Q

(a) (b)

NNN—=

] (D) 2oa

(1.85 + j2.77) Q

Fig. 6.38
By current division rule,

1.85+ j2.77

Iy =2£0°x%
1.85+ j2.77+8— ;2

=0.67£51.83° A (1)
Step III By superposition theorem,

Io =I5 +15 =0.56.£81.84°+0.67.£51.83°=1.19£65.46° A ()

" SEIICNWER  Find the current through the j5 Q2 branch for the network shown in Fig. 6.39.

1

j5Q 3Q —Jj4 Q

+ + +
10 £0°V 15 £90° V 20 £0°V

Fig. 6.39



6.4 Superposition Theorem 6.21
Solution
Step I When the 10£0° V source is acting alone (Fig. 6.40)

I/
=

5o 50 — 40
+
10 £0°V
Fig. 6.40
Z; = j5+ 270 _ 404261660
3—j4
4 (e}
= 10208 g -6166°A (=)
4.0461.66°

I//

Step II When the 15£90° V source is acting alone (Fig. 6.41) <

z; =3+ Y0 099, 814700 /59 30 e
Jj5—J4
+
4 o)
; 329" _ 74171470 A 15 £90° V

T 2022/-81.47° >

By current division rule, Fig. 6.41

—i4
I =0.74,171.47°x — =

—=296/-853°A(«<)=296£17147°A (=)
—j4+j5

Step III  'When the 20 £0° V source is acting along (Fig. 6.42)

IIII IT

< <
) L

j5Q 30 —j4 Q
+
20 £0°V
Fig. 6.42
3(j5
Zr = —j4+L_) =3.47/-50.51°Q
3+ /5
Lo 20200 5650510 A
3.47£-50.51°
By current division rule,
3 ,
1”7 =5.76£50.51° % — =2.96/-8.53° A (< )=2.96/£171.47° A (—)

3+ 5



6.22 Network Analysis and Synthesis

Step IV By superposition theorem,

I=T+1"4+1"=2.484-61.66°+2.96£171.47°+2.96 £171.47° = 4.86 L—-164.41° A

" SEIICNWLE  Find the voltage drop across the capacitor for the network shown in Fig. 6.43.

—_j2Q

20 £45°V
Yy
+ +\r\_)/_ VWV
20Q 10 £0°V
- —— 20
5 Q 4Q
Fig. 6.43
Solution -
r
Step I When the 10£0° V source is acting alone " > MV
(Fig. 6.44) s 5 12) 00 10 L0°V
Zp =4+ L0270 -
2+ j542-j2
=7/-591°Q /5 40
= & =1.43/591° A
7/-591° Fig. 6.44

By current division rule,

2+ 75

I =(143£591°) — 2>
2+ j5+2— 2

J: 1.543724° A (—)

Step II When the 20£45° V source is acting alone (Fig. 6.45)
20 £45°V .

2Q |
I\
2Q
§4Q —_— —j2Q
j5Q
Fig. 6.45
42+
Zr =(2— j2)+ 225D _yug,_gs40 0
4+2+J5
, /45°
I 20245° 4 46/5384°A ()= -446/5384°A ()

T 448/ —8.84°



6.4 Superposition Theorem

Step III By superposition theorem,
I=01"+1"=1.54/3724-446,53.84°=3.01£-117.78° A
V. =(—j2)I=(—;2) (3.01£-117.78°) =6.02.£152.22° V

" SEINICNWEN  Find the node voltage V, in the network of Fig. 6.46.

5/30°V

10 £0° A D 50 20 %/109<>5400v

Fig. 6.46
Solution

Step I When the 10£0° A source is acting alone (Fig. 6.47)

5£30°V
Vy Ty
*—AN—TTT
1020°a (}) 50Q 20 g 00
Fig. 6.47

Applying KCL at Node 1,

Vl AR N 2 Vi- V) =10£0°
5 5/30°

(1+ ! )V{ _ V, =10£0°
5 5/30° 5/30°
(0.37—-70.D)V, —(0.17— jO.1)V, =10.£0°

Applying KCL at Node 2,

Y-V V2 V2
52300 2 j10

=0

1 . 1 1 1
- VvV + +——+ V2 0
5/30° 5/30° 2 ]10

—(0.17 = jO.1)V; +(0.67— j0.2)V; =

6.23

...(0)

..(ii)



6.24 Network Analysis and Synthesis

Writing Eqgs (i) and (ii) in matrix form,

037-j0.1 —0.17-0.1][ v; | _[1020°
~(0.17-0.1)  0.67-j02 |[vi| | 0

By Cramer’s rule,
0.37-;0.1 10£0°
—(0.17-;0.1) 0
037-;0.1 —(0.17-,0.1)
-(0.17-;0.1)  0.67- ;0.2

V, = =857/-336°V

Step I When the 520° A source is acting alone (Fig. 6.48)
5£30°V

5§2§ 20 gﬁog D5400A

Fig. 6.48

V2 _+V_2+V_2:540°
5.30°+5 2 410

(0.61£-11.93°)V, =520°

V, =82/1193°V
Step III By superposition theorem,
V,=V,+V, =857/-336°+8.2/11.93°=16.62.4.12° V

" Example WA  Find current through inductor in the network of Fig. 6.49.

8,/135°V
()
SO&
2 Q -1 Q
[
500 B

2,0°A D §QQ Q 2/90° A

8/135°V
Fig. 6.49 ()
Solution j2Q |'D -1 Q
. . OO | |
Step I When the 8£135° V source is acting alone (Fig. 6.50)
Applying KVL to the mesh, © 50 ©
8/135°—(—;jHI'= ;2I'=0 T T

4 [e]
3D g s A ()=82-135° A ()

I/
jl Fig. 6.50



Step I When the 2£0° A source is acting alone (Fig. 6.51)

6.4 Superposition Theorem 6.25

2 Q -ji1 Q

7000

2,0° A D ;29

Fig. 6.51

The network can be redrawn as shown in Fig. 6.52.
By current division rule,

il _jl
17 =220°| —L | =2.0°| =L | = 22180° A(—)
1+ 2 il

Step III ' When the 2.290° A source is acting alone (Fig. 6.53)

2 Q -1 Q
| |
000 | |

O
§ 2Q Q 2/90° A

Fig. 6.53

The network can be redrawn as shown in Fig. 6.54.
By current division rule,

— 1
1”7 =2 4900(7]] =2/-90°A («<)=2,90°A (=)

—jl+ ;2

Step III By superposition theorem,

I=T+1"+1" =8 £-135°+2/£180°+2/90° =8.49/-154.47°A

Fig. 6.52
12 Q I/N
T —
-1 Q

§ 2Q Q 2,90° A

Fig. 6.54

" SENNCNWHYR  Determine the source voltage V so that the current through 2 £2 resistor is zero in

the network of Fig. 6.55.

3Q 2Q 40
NV NV
+
v, 3 Q ——j3Q

Fig. 6.55

+
20£90° V



6.26 Network Analysis and Synthesis
Solution

Step I 'When the voltage source V _is acting alone (Fig. 6.56)

3Q 2Q 4Q
AN AN A
+
& ) gee ) Lon)
- Iy Py I3
Fig. 6.56

Appling KVL to Mesh 1,
V, =31 - 3L -1,) =0

B+ j3; — j3I, =V, ..(0)
Appling KVL to Mesh 2,
=3 1) = 2L, + j3(I, ~13) = 0
— 3L +21, + j313 =0 ...(i)
Appling KVL to Mesh 3,

—j3(I; —1,)—41; = 0
3L, +(4— )5 =0 ...(iii)
Writing Eqgs (1), (ii) and (iii) in matrix form,
343 =30 Y| [v,
-3 2 3 |L" |=| o0
0 3 4=y 0

By Cramer’s rule,

3+/3 V, 0
~j3 0 3

o0 0 4= sy,
3+/3 -3 0 A
-3 2 3

0 j3 4-j3

Step I When the 20 £90° V source is acting alone (Fig. 6.57)

3Q 2Q 40
AYAYAY AYAYAY AYAYAY
. +
j3Q —-j3Q 20,90° V
I1” I2// I3” -
Fig. 6.57

Applying KVL to Mesh 1,
31— 31 —15)=0
G+ 31 — j3I, =0 ..(0)



6.5 Thevenin’s Theorem 6.27
Applying KVL to Mesh 2,
=3 = 1)) =215 + j3(1, - 15) =0

—j3I +21, + j3L; =0 (i)
Applying KVL to Mesh 3,
315 —15) =415 —20.£90° = 0
315 +(4— j3)T5 = —20.£90° ...(iii)
Writing Eqgs (i), (ii) and (iii) in matrix form,
343 -3 0 N 0
-J3 2 J3 L = 0

0 3 4-73]|r| [-2029°

By Cramer’s rule,

3+ /3 0 0
-J3 0 j3
- 0 —-20£90° 4-;3] —180- /180
T PB+3 =30 B A
-j3 2 Jj3
0 j3 4-3
Step III By superposition theorem,
L=l 4T, = 9+ j12)V, +(-180 - j180) _ 0

A
(9+ j12)V, +(~180— j180) =0
(9+ j12)V, =180+ ;180
V, =16.97£-8.13°V

m" THEVENIN’S THEOREM

Thevenin’s theorem gives us a method for simplifying a network. In Thevenin’s theorem, any linear network
can be replaced by a voltage source V.., in series with an impedance Z._,.

" SETNICENCWEN  Obtain Thevenin's equivalent network for the terminals A and B in Fig. 6.58.
30 4Q Q. —j4Q
vt o4
+ 4Q
50£0°V
= 6 Q

o B

Fig. 6.58



6.28 Network Analysis and Synthesis
Solution
Step I Calculation of V_, (Fig. 6.59)

30 —j4 Q j5 Q —j4 Q
|| T f——o4
50£0°V ) Vo,
- I j6 Q
oB
Fig. 6.59
Applying KVL to the mesh,
50£0°-@B—-j4)I1-(4+,j6)1=0
50£0°

=6.87£-1595° A

(3 j4)+(4+ j6)
V.. =(4+/6)1 =(4+6) (6.87 /~15.95°) =49.5 £40.35° V

Step I  Calculation of Z, (Fig. 6.60)
(3 j4)4+ j6)

Zr, =(j5—j4)+ =483/-1.13°Q
L Ay TRaTyTS
30 —j4 Q j5 Q —j4 Q
|| TO——| f——oA
4Q
<~ Zm
j6 Q
OB
Fig. 6.60
Step III Thevenin’s Equivalent Network (Fig. 6.61)
4.83 £Z-1.13°Q
oA
+
49.5 £40.35° V f\)
oB
Fig. 6.61
" SETNIECWEN  Find Thevenin'’s equivalent network for Fig. 6.62.
50 20 j5 Q
NN || O 0A

+
10430°V@ ;39 §5§2

o B

Fig. 6.62



6.5 Thevenin’s Theorem 6.29
Solution
Step I Calculation of V_, (Fig. 6.63)

5Q —j2 Q 5 Q
AN || OO 0 A
+
10 £30° V r\) §39 §59 Vo,
0B
Fig. 6.63
Applying KVL to Mesh 1,
10 £30° = (5—-,2)1, -3, -1)=0
(8-72)1,-3L,=10 £30° ...(1)
Applying KVL to Mesh 2,
3@ -1)-j5L-5L=0
3L+ (@ +/5L,=0 ...(11)

Writing Egs (1) and (ii) in matrix form;
8—j2 =3 |[n]_[10£30°
-3 8+/5||L| 0

‘8—]2 10.£30°

By Cramer’s rule,

-3 0
I, = - =0.43329.7° A
8—j2 3
-3 845

Vrn =51, =5(0.433£9.7°) =2.16£9.7° V

Step Il  Calculation of Z, (Fig. 6.64) 20 /5 Q
[

7000 0 A

||
_ (5—1‘2)3} }
Zoy =122 122 L isly5
" H5—ﬂ+3 / §59 §39 §59 - Zm,

=[1.94— j0.265+ ;51| 5= (1.94+ j4.735)|5

. o B
_ (1.94+ j4.735)5 L 304.33.4° O
6.94+ j4.735 Fig. 6.64
Step III Thevenin’s equivalent Network (Fig. 6.65)
3.04 £33.4° Q
oA
+
2.16 £9.7°V f\)
o B

Fig. 6.65



6.30 Network Analysis and Synthesis

" SETNTI NN Obtain Thevenin'’s equivalent network for Fig. 6.66.

40 10/4_(<V
A O
20 5 £90°V
j6 Q —j4 Q
—|_ OB
Fig. 6.66
Solution
Step I Calculation of V.,
10 £0°V
4Q
(~)
AE Sanl
20 5 £90°V
D - Vi
j6 Q I L g
_—|— 58
Fig. 6.67
Applying KVL to the mesh,
2+ j6—j4HI-5290°=0
4 [e]
I= SL90° 1.77£45° A
2+ 52

V., =(H4) I+5290° 10 £0°=(4 £-90°) (1.77 £45°) + 5 £90° — 10 £0° =18 £146.31° V
Step II  Calculation of Z, (Fig. 6.67)

4Q
NV 0A
2Q
<~ Zm
j6 0 ———j4Q
OB
Fig. 6.68

6 (— id
Zoy =4+ IO 115, 440300
2+ 52
Step III Thevenin’s Equivalent Network

11.3 £-44.93° Q
0 A

i

o B



6.5 Thevenin’s Theorem

" SETNTI NI Obtain Thevenin's equivalent network for Fig. 6.70.

10 £0° A j159§29

6.31

——OA
3@ “_—j5Q
OB
Fig. 6.70 |
Solution §
0 15Q 220
Step I Calculation of V., (Fig. 6.71) 10.207A
By current division rule, oA
(Jj 30 “—-5Q Vm
I= w =13.42/26.57° A
5—j5+ 15 oB
V=91 Fig. 6.71
=(5 £-90°) (13.42 £26.57°) = 67.08 £—63.43° V
Step I  Calculation of Z, (Fig. 6.72)
— 55+ j15 j15Q 20Q
- CPBHY) _g47, g186° @
—j5+5+ 15
—————O0A
Step III Thevenin’s Equivalent Network 30 ——_j5Q =< Zp,
7.07 £-81.86° Q
oA OB
+ =
Fig. 6.72
67.08 £-63.43°V @ &
oB
Fig. 6.73

" SETNTI XY Obtain Thevenin's equivalent network for Fig. 6.74.

+
20 £0°V f\D

Fig. 6.74



6.32 Network Analysis and Synthesis
Solution
Step I Calculation of V_, (Fig 6.75)

+
20 £0°V f\)

Fig. 6.75

o 20£0°
"1+ 12+ j24

2020°
2780+ j60

=0.49£-36.02° A
=0.2£-36.86° A

V., =(12+24) 1, - (30 +60) I,
= (26.83 £63.43°) (0.49 £-36.02°) — (67.08 £63.43°) (0.2 £-36.86°)
=0.33 Z171.12° V

Step Il Calculation of Z, (Fig. 6.76)

21 Q 50 Q
AN AN
AO0— ——-oB
AT — AT
12Q 240 30Q j60Q
Fig. 6.76

_21(12+24) 50(30+ j60)

Th =47.4/26.8°Q
33+ 524 80+ 60
Step III Thevenin’s Equivalent Network
47.4 £26.8° Q
oA
+
0.33 £171.12°V @
o B

Fig. 6.77



6.5 Thevenin’s Theorem

" SEINICNIER  Find Thevenin's equivalent network across terminals A and B for Fig. 6.78.

0 A
10 50
2 245° A D .
2Q
10 £90° V
_ o B
Fig. 6.78
Solution
Step I Calculation of V_, (Fig. 6.79)
0 A
+
2 /45° A D . Vi
2Q
10 £90° V
- 5B
Fig. 6.79

Applying KCL at the node,

Vin_ Vm =10290°
1+ j2 5

=2./45°

1 1
+— |V =24£45°+2.290°
1+j2 5

(0.57£— 45°)Vyy = 3.7£67.5°
Vo, =6.49/112.5°V

Step Il Calculation of Z, (Fig. 6.80)

O A
1Q
§ 5Q < Zq
2 Q
OB
Fig. 6.80
L= g 4500

S 541+ 52

6.33



6.34 Network Analysis and Synthesis

Step III Thevenin’s Equivalent Network (Fig. 6.81)

+
6.49 £112.5°V @

1.77£45° Q
o A

o B

Fig. 6.81

" SENNACNIYN  Find the current through the (5+ j2) Q impedance in the network of Fig. 6.82.

5Q

AVAYAY;

+ 3Q é 2Q

20 £0°V r\)
) j2Q Q 20 £0° A
50 —_—j2Q
Fig. 6.82
Solution
Step I Calculation of V., (Fig. 6.83)
5Q V,
AVAYAY; *
3Q 2Q
+
o Ao+ °
20 £0°V _m) Vo, Q 20 £0° A
Bo- -2 Q
[
Fig. 6.83
Applying KCL at the node,
V; —20£0 N i _ 20.£0°
5 2—-j2

1
—+ V| =20£0°+4.£0°
5 2-,2

0.51£29.05° V| = 2420°

Vi =47.06£-29.05° V
Vi, =V, =47.06£-29.05° V



6.5 Thevenin’s Theorem

Step Il Calculation of Z, (Fig. 6.84)

5Q
NV
3Q 2Q
A
Z1,
[ 7"
Fig. 6.84
2—j2
Zrn =3+22772 479, 11350 Q
5422
Step III  Calculation of I, (Fig. 6.85)
4.79/-11.35° Q
A
I
+ 50Q
47.06 £-29.05° V f\) /D
B L 2Q
B
Fig. 6.85

_ 47.06/-29.05°
479/-1135°+5+ ;2

" SENNCIREW  Find the current through the 5 2 resistor in the network of Fig. 6.86.

j5Q
00

640°AG> §5Q §4Q ——-pQ <D440°A

Fig. 6.86

=4.73/-39.96° A

L

Solution

Step I Calculation of V_, (Fig. 6.87)

v, B5Q

A
6 £0°A CD Vi 4Q -2 Q CD 4,0°A
T |

Fig. 6.87

6.35



6.36 Network Analysis and Synthesis

Applying KCL at Node 1,

Vi ViV,
4 s

+6£0°=0

11 1
—— |V, = —V, = —6.£0°
4 s Iz

(0.25-0.2)V; + 0.2V, = -6£0°
Applying KCL at Node 2,
Va-Vi V2 g0
J3 -J2

1 (1 1)
(_._)Vl +L_——_—JV2 =4.0°
73 7S Jj2
jO2V+ j0.3V, =4.£0°
Writing Egs (1) and (i1) in matrix form,
0.25-;0.2 jO2|[ V| _|-6£L0°
j0.2 JO3||V, | | 420°
By Cramer’s rule,
‘—640" j0.2

420° j0.3’
=20.8/-126.87°V
0.25— j0.2 j0.2‘

j0.2 j0.3
V=V, =20.8£4-126.87°V
Step I  Calculation of Z, (Fig. 6.88)

1:‘

j5Q

Ao
Zh—> §4Q 20

Fig. 6.88
_A=j2+)5)

= =24/53.13°Q
4— j2+ j5)

Step III  Calculation of I, (Fig. 6.89)

_20.8/-126.87°

L

2.4 £58.

'y

3°Q

...()

..(ii)

0 A

]
L
1, = > =3.1/-14347° A +
24/53.13°+5 20.8 /-126.87°V f\) |
- L

S50

Fig. 6.89

o B



6.5 Thevenin’s Theorem 6.37

" SEINI NI i the network of Fig. 6.90, find the current through the 10 Q2 resistor.
5 £30°V

2Q
O—
+
1Q 10 £0°V
- § 10Q
—j2 Q 50Q
Fig. 6.90
Solution
Step I Calculation of V., (Fig. 6.91) 5 ?3%’ Viosg
Applying KVL to the mesh, H)—VW A
J2I—11-10£0°—51=0 {
1Q 10 £0°V
(j2—6)I =10£0° ”) - Vi
- .I:1.584—161.57 A 20 I .
Writing V_, equation, -
S5T+10£0°—5230°—0— Vg, =0 °B
5(1.584£-161.57°)-10£0°-54£30° = V1, =0 Fig. 6.91
Vi, =5.32£-110.06° V
Step Il Calculation of Z, (Fig. 6.92) 20
AAYAY OA
ZTh:2+M:3.484—21.04°Q 10
5+1-2 § 5Q <~ Zy,
2 Q
Step III  Calculation of I, (Fig. 6.93) oB
3.48 £-21.04° Q .
1 oA Fig. 6.92
+
5.32 £-110.06° V r\) § 10Q
= IL
o B
Fig. 6.93

_5.32/-110.06°
3.48£-21.04°+10

. =0.4/-104.67° A
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" SENII NI  Find the current through (4+ j6) Q impedance in the network of Fig. 6.94.

20 j5Q 30 ‘{5 @
—\A——T00 AMA— =
+ 40 N
100 £0°V f\) @ 50 £90°V
N P a
Fig. 6.94
Solution
Step I Calculation of V., (Fig. 6.95)
20 /50 3o RO
—\M—T00 ANN— |
(]
+ + +
100 £0°V (\D E\) 50 £90°V
Fig. 6.95
Applying KVL to the mesh,

100£0° —2I — j5I =3I+ j51-50£90°=0
1=2236£-26.57°A
Writing V,, equation,
Vi, =31+ j51-50£90°=0
Vin —(3—75)(22.36 £-26.57°) - 50£90° =0
Vi, =80.61£4-82.88°V

Step Il  Calculation of Z, (Fig. 6.96)

20  j5Q 3 PO
—NA— T l AA— F—
A

Zyy,
T B
Fig. 6.96

_(2+j53-/9)
2+ 75435

H =6.28/9.16° Q
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Step III  Calculation of I, (Fig. 6.97)

6.28.,9.16° Q
A
L]
+ 40
80.61 /-82.88°V @
S I
L j6 Q
B
Fig. 6.97

_80.61.£-82.88°
6.2829.16°+4+ j6

L =6.52/4-117.34° A

" SENICNRER  Obtain Thevenin's equivalent network across terminals A and B in Fig. 6.98.

I 40Q 2Q
VW oA
-fAQ

+
1040°V@
> 21

o B
Fig. 6.98
Solution 1 4Q 2Q
> AANA o0 o A
Step I Calculation of V_, (Fig. 6.99) L -fo *
Applying KVL to the mesh, e
PPyIng 1040°v@ (2%
10£0° 41+ j1I1-21=0 > 21
1=1.64/9.46°A _
o B
Writing V.. equation,
& Y &4 Fig. 6.99
10£0°—4I-0-V1, =0
10£0°-4(1.64.£9.46°)— V1, =0
Vi, =3.69£-17°V
Step I  Calculation of I, (Fig. 6.100)
From Fig. 6.100, | 40 PO A
I=1 ——\VVV L 7000

Applying KVL to Mesh 1, " e
10£0° -4 + jI(I; 1) =21 =0 10°4°°V@ ) ézu ) "
10£0°— 4L, + j1I; — j1I, =21, = 0 ) ! "
(6— DI+ jII, =10£0° ...(1)

Applying KVL to Mesh 2,
21+ 101, - L) —j2I, =0 Fig. 6.100
211 +j112 _jlll —j212 =0

B
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Writing Egs (i) and (ii) in matrix form,
6-j71 1 || L |_|10£0°
2—71 —jI|{|L]| | 0
By Cramer’s rule,
6—-;1 10£0°
2—jl1 0
I, =—"——F—=271£4-102.53° A
6-;1 j1
2—j1 —jl1
Iy =1, =2.71/4-102.53° A
Step III  Calculation of Z,
Vv 3.69£-17° ,
Zyy = —2 = =1.36/85.53° Q
Iy 2.71£-102.53°
Step IV Thevenin’s Equivalent Network (Fig. 6.101)
1.36 £85.53° Q
oA
+
3.69 /-17°V (~)
o B
Fig. 6.101
" SETNI NN  Find Thevenin's equivalent network across terminals A and B for Fig. 6.102.
20 4 Q
NV ”O'W—J?A
+
5.£0°V
- ¢ 0.2V, Vv,
1Q
o B
Fig. 6.102
Solution 20 j4Q
. . AAYAY “TO0——0 A
Step I Calculation of V., (Fig. 6.103) N +
) 5.£0°V
From Fig. 6.103, . - ) $ozv, V,= Vi
I=-02V, .. (D) 10 1
Writing V., equation,
o B

—I+5/0°-0-V, =0

Fig. 6.103
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0.2V, +520°-V, =0
V, =6.2520°V
Vi, =V, =6.2520°V

Step I  Calculation of I, (Fig. 6.104)

20 4 Q
A% ’ 66(5\—o+ A
+
5.£0°V
- T 0.2V, v, Yl
1Q
- g
Fig. 6.104
From Fig. 6.104, 2Q j4Q
V,=0 NV 00 oA
+
The dependent source depends on the g gy
controlling variable V. When V, =0, the > Y
dependent source vanishes, i.e. 0.2V, =0 as N
shown in Fig. 6.105. 1Q
5£0°
N = =1/-53.13° A °B
1+2+ j4 .
Fig. 6.105

Step IIl  Calculation of Z.,

V. 6.25.20°
Zoy, = —2 = =6.25/53.13° Q
Iy 1£-53.13°

Step IV Thevenin’s Equivalent Network (Fig. 6.106)

6.25 £53.13° Q
o A

+
6.25 £0°V r\)

o B

Fig. 6.106

X3 norTON’S THEOREM

Norton’s theorem states that any linear network can be replaced by a current source 1, parallel with
an impedance L, where 1, is the current flowing through the short-circuited path placed across the

terminals.
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" SETNTI RN Obtain Norton’s equivalent network between terminals A and B as shown in Fig. 6.107.

3Q /4Q

25 £0°V

-j5 Q

T

Fig. 6.107
Solution

o B

Step I Calculation of I, (Fig. 6.108)

30 j4Q
When a short circuit is placed across (4 —j4) Q impedance,

it gets shorted as shown in Fig. 6.1009.

30 j4Q 25 20°V
N AA%AY 7000 A
25 £0°V
= Iy
B
Fig. 6.109
2520°
N = — =5/-53.13° A
3+ j4
Step I  Calculation of Z,, (Fig. 6.110)
_CHEZ) 53,9000
3+j4+4- 5
Step III Norton’s Equivalent Network
OA
5 £-53.13° A Q) |::|4.53 £9.92° Q
oB
Fig. 6.111

" SETYACNRSM  Obtain Norton’s equivalent network at the terminals A and B in Fig. 6.112.

5Q
AA%AY oA

4 Q

10 £30° A D

4 Q

o B
Fig. 6.112
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Solution
Step I Calculation of I, (Fig. 6.113)

5Q
AVAVAY 0 A
1Q 40Q
10 £30° A D Yy
2Q j4Q
°B
Fig. 6.113
By series-parallel reduction technique (Fig. 6.114)
50
AVAYAY O A
10 £30° A D [] 1.62 £58.24° Q YIn
°B
Fig. 6.114
1.62./58.24° ,
Iy =(10£30°) =2.69-75° A
1.62£58.24°+5
Step Il Calculation of Z,, (Fig. 6.115)
50
NV oA
1Q 4Q
- ZN
2Q j4Q
o B
Fig. 6.115

14 :
Zy =5+ UHIDEHTD (01 130400
1+ j2+4+ ja

6.43
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Step III Norton’s Equivalent Network (Fig. 6.116)

2.69 £75° A D |j 6.01.£13.24° Q

Fig. 6.116

" Example (W:YA Find Norton’s equivalent network across terminals A and B in Fig. 6.117.

oA
% jAQ § 10 Q
4 /45° A
D .
§ 3Q E\) 25 /90°V
o B
Fig. 6.117
Solution
Step I Calculation of I, (Fig. 6.118)
A
O
j4Q 10 Q
4 ,45° A D N Yn
3Q 25 /90°V
°B
Fig. 6.118

When a short circuit is placed across the (3+ j4) 2 impedance, it gets shorted as shown in Fig. 6.119.

oA
10 Q
4 /45° A (D \a
+
25 /90° V
oB

Fig. 6.119
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By source transformation, the network is redrawn as shown in Fig. 6.120.
oA oA

=

a245° A (}) O 2.5490°A§1og I 4z45°A(}) (4) 25290°A Y

OB oB
(a) (b)
Fig. 6.120

Iy =4245°+2.5290° = 6.03£62.04° A

Step Il Calculation of Z,, (Fig. 6.121)

0 A
4 Q
; 10 Q -~ Zy
3Q
o B
Fig. 6.121
1 4
b =06 5 6836030 Q
10+3+ j4
Step III Norton’s Equivalent Network (Fig. 6.122)
oA
6.03 £62.04° A D [] 3.68 £36.03° Q
o B
Fig. 6.122

" EINICNWEW  Obtain the Norton’s equivalent network for Fig. 6.123.

10 £0° A 5Q J<Xo)
j5 Q
A
2Q -5 Q

.

Fig. 6.123

6.45
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Solution
Step I Calculation of I, (Fig. 6.124)

10 £0° A 5Q % BQ
j5 Q
7000 A
20 50 Iy
B
Fig. 6.124

By source transformation, the network can be redrawn as shown in Fig. 6.125.
Writing KVL equations in matrix form,

+

5 js|[u]_[s00° 50 £0°V 50
]5 0 12_ 0 -
By Cramer’s rule, 5Q
5 50£0° g 1o
50 ' T
L=""" " l-10,-90°A 2 &>
5 j5
%)
Iy =1, =10£-90° A Fig. 6.125
Step I  Calculation of Z,, (Fig. 6.126)
50 % BQ
j5 Q
00 0
2 —E ~2zy
o
Fig. 6.126
4 Sy (— i
Zy = j5s+ OFPIED) s g
5+ j5— 5
Step III Norton’s Equivalent Network (Fig. 6.127)
OA
10 £-90° A D D 5Q
oB

Fig. 6.127
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" EINI KWW Obtain the Norton’s equivalent network for Fig. 6.128.

+
10445°Vr\)

Solution
Step I Calculation of I, (Fig. 6.129)

Writing KVL equations in matrix form,

Fig. 6.128

15-72 -10+;2 =5 I 10£45°
-10+,72 15-;2 0 L |= 0
-5 0 15+ 21|15 0
By Cramer’s rule,
Fig. 6.129
15—-j2 10£45° =5
-10+ ;2 0 0
-5 0 15+ 2
I, = =1£41.28° A
15-72 -10+j72 =5
-10+,2 15-,2 0
-5 0 15+ ;2
15-j2 —10+4 ;2 10£45°
-10+,2 15-,2 0
=5 0 0
I; = =0.49437.41° A
15-j2 -10+,2 =5
-10+ ;2 15-;2 0
-5 0 15+ ;2

Ty =1, —T, = 049/37.41-1/41.28° = 0.51/-135° A

Step Il Calculation of Z,, (Fig. 6.130)
10qQ ;59 100 /2 0 5Q
) VMV | T NV
-2 Q
Zy o o o
A B A B
5Q 100 AN ANA—TTT
5Q 10 Q 20
2 Q

Fig. 6.130
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. 510 - j2) N 5(10+ j2) — 6700
5+410—-j72 5+10+ ;2

Step III Norton’s Equivalent Network (Fig. 6.131)

0 A

0.51 £-135° A D [] 6.72Q

o B

Fig. 6.131

" SEII KW CW  Find the current through the 8 2 resistor in the Network of Fig. 6.132.

50
X 80 100
20 £0°V @ Q 5.20°A
- j4Q
Fig. 6.132
Solution
Step I Calculation of I, (Fig. 6.133)
50Q
A
100
+
20 £0°V r\) In Q 5.20°A
) B j4Q
Fig. 6.133

When a short circuit is placed across the (10+ j4) Q impedance, it gets shorted as shown in fig. 6.134.

50
A
+
20 £0°V @ In Q 5.20°A
B

Fig. 6.134
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By source transformation, the network is redrawn as shown in Fig. 6.135.

4.20° A D §59 Y Iy Q 5.20° A

Fig. 6.135
Iy =420°+520°=920° A

Step I  Calculation of Z,, (Fig. 6.136)

50
AN
A
o 10 Q
Zy
o
B 4 Q
Fig. 6.136
5(10+ j4
y =200 g 68700 A
5+10+ j4 )
9.,0°A D [] 3.47 /6.87 Q
Step III  Calculation of I, (Fig. 6.137) 8Q
B
9./0°
=———=0.79/-2.08° A .
LT3 47,2687°+8 Fig. 6.137

" SENICNKCW  Obtain Norton’s equivalent network across the terminals A and B in Fig. 6.138.
51

-

100 Q | |7j5Q A
| ©

:

10200V () j100

N

Fig. 6.138
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Solution
Step I Calculation of V_, (Fig. 6.139)

51
| 100 Q -j5Q
| | oA
+ _ +11- +
+
10 200V () 3,-109 Vi,
oB
Fig. 6.139
I= 10207 =0.1£-5.71°A
100+ 410
Writing V., equation,
10£0° =100 I - (—j5)(5I) = V1, =0
10£0°-100(0.1£=-5.71°)+ (j5)(5)(0.1£-5.71°) = V1, =0
Vr, =3.5485.1°V
Step Il Calculation of I, (Fig. 6.140)
51
1 100 Q | |7j5Q A

o

+
1040°v@ %/’10Q Iy

B
Fig. 6.140
By source transformation, the network is redrawn as shown in Fig. 6.141.
| 1000 -j5Q —j251
<
+
10200V () /D %/’109 /> Iy
- Iy I,
B
Fig. 6.141
From Fig. 6.141,
I=1

...()
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Applying KVL to Mesh 1,
10£0°-100I; — j10(X; - 1,) =0
(100+ j10)I; — j10I, =10£0° ...(11)
Applying KVL to Mesh 2,

_10(Ly —1,) + /5T, + j251 =0
—]1012 +]IOI] +j512 +J2SI| =0
7351, — j51, = 0

Writing Eqgs (ii) and (iii) in matrix form, - (i)
100+ 10 —j10][1,|_[10£0°
j35 -S|l | o

‘100+j10 10.£0°

By Cramer’s rule,

i35 0
I, = : —1=0.6£30.96° A
100+ 710 —;10
35 =5

Iy =1, = 0.6230.96° A

Step III  Calculation of Z,,

Vi, 3.5/85.1°
Iy 0.6230.96°

Zy = =5.83./54.14° Q

Step IV Norton’s Equivalent Network (Fig. 6.142)

0 A
0.6 £30.96° A D [] 5.83454.14° Q
o B
Fig. 6.142
XA || MAXIMUM POWER TRANSFER THEOREM Zs

This theorem is used to determine the value of load impedance for which
the source will transfer maximum power. v +<> /B}V
. . . . s (MO 4
Consider a simple network as shown in Fig. 6.143. A L
There are three possible cases for load impedance Z,.

Fig. 6.143
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Case (i) When the load impedance is variable resistance (Fig. 6.144)

Case (ii)

The power delivered to the load is

v \4
Z,+7Z;, R+ jX;+R;

IL ZS: Rs+sz

]

L 1
JR +Rp)? + X2 vf@ An

I

2
P = ]lle R, = |VS| R Fig. 6.144 Purely resistive load
VR + R, + X,

For power to be maximum,

aa_y
dR;
v, (R +R )+ X} -2R (R +Ry) | _ o

[(R+R.)* + X{T
(Re+R.)> + X% —2R, (R, +R,)=0
R?+2RR; + R} + X2 =2R;R,—2R? =0
R +X:-Ri =0
R} =R} + X?

R, =R} + X2 =|z,|

Hence, load resistance R, should be equal to the magnitude of the source impedance for maximum
power transfer.

When the load impedance is a complex impedance with Zs=Rs+jXs
variable resistance and variable reactance (Fig. 6.145) ||
\Y +
I, =—— v - '
t Z,+7, S@ JE Z =R +jX,
Vv
)= ——

32 2
\/(RS PR H X+ XL) Fig. 6.145 Complex impedance load

The power delivered to the load is
2
[Vs|” R,
(Ro+Ru)? + (X + X))

2
P =\l R, =

For maximum value of P,, denominator of the equation should be small, ie. X =—X,.

PZIWF&
(R, +R,)*
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Differentiating the above equation w.r.t. R, and equating to zero,

@y, |2[(RS+RL)2 —2RL(RS+RL)]:O
dr, '* (Ry+R;)?

(Ry+R.)* -2 R, (R,+R,)=0

RZ+2RR; +R; -2 R;R,—2R} =0

RI-RI =0
Ri =R}
RL - Rs

Hence, load resistance R, should be equal to source resistance R, and load reactance X,
should be equal to negative value of source reactance for maximum power transfer.

7, = Z\: =Ry — jX;
i.e. load impedance should be a complex conjugate of the source impedance.

Case (iij) When the load impedance is a complex impedance with variable resistance and fixed reactance
(Flg. 6146) ZSZ RS+jXS

V, L1

“Z.+17, 4
s v, Vs @ 2 Z,=R,+jX,

I,

1 |=
VR + R+ (X, + X, )P
The power delivered to the load is Fig. 6.146 Complex impedance load
2
2 Vi| R,
P=I|"R, = [V

JORy + R +(X, + X, )2
For maximum power,
dp,
dR;,
2| (R 4+ R +(Xs+ X, ) =2 R, (R, +Ry) 0
{(Ry+ Ry )? + (X, + X )"}
(RAB X £ X0 -2 RulR4-R.) =0
RE4+2R R +R*+(X,+X1)*-2R.R,-2R} =0
RE+(X;+X.)*-RE=0
R =R} +(X,+X,)

=0

Vil

Ry =R +(X, + X.)’

=R, + j(X, + X1)|
R+ jXs+ jX 1|
=|Z, + jX.|
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Hence, load resistance R, should be equal to the magnitude of the impedance Z; + jX,, i.e.
|Z; + jX;| for maximum power transfer.

" SEINICNWYE  For maximum power transfer, find the value of Z, in the network of Fig. 6.147 if

(i) Z, is an impedance, and (ii) Z, is pure resistance.

60 -8 Q
| |
AYAYAY |

NS =

Fig. 6.147
Solution Z,=(6—,8)Q
(i) IfZ,is an impedance
For maximum power transfer, Z; = Z,= (6+j8)Q

(if) IfZ, is a resistance
For maximum power transfer, Z; = ‘ZS| = |6 + j8‘ =10Q

" Example CW:S W For the maximum power transfer, find the value of Z, in the network of Fig. 6.148
for the following cases:

(i) Z, is variable resistance, (ii) Z, is complex impedance, with variable resistance and variable reactance,
and (iii) Z, is complex impedance with variable resistance and fixed reactance of j5 £2.

o
20Q 30
10A D
50 5.40°V
o B
Fig. 6.148

Solution Thevenin’s impedance can be calculated by replacing voltage source by a short circuit and current
source by an open circuit.

0 A
2Q
;39 ~Zn,
j5Q
o B

Fig. 6.149
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32+ j5)

= =(2.1+70.9) Q
Th 3+24+ 5 ( /0.9)

For maximum power transfer, value of Z, will be,
(i) Z, is variable resistance
Z; =|Zm|=]2.1+ 0.9 =228Q
(if) Z, is complex impedance with variable resistance and variable reactance

Z,=Zm =(2.1-j0.9)Q

(iti)  Z, is complex impedance with variable resistance and fixed reactance of j5 Q

Z; =|Zny, + j5|=]2.1+ j0.9+ j5|=6.26 Q

6.55

" B EINI RN Find the impedance Z, so that maximum power can be transferred to it in the network

of Fig. 6.150. Find maximum power.

30 30
AN A
+
540°v@ %jSQ —_ 30 DZL
Fig. 6.150
Solution
Step I Calculation of V., (Fig. 6.151)
Ir 30 30
AN AN oA
I
+
5.£0°V @ %j(ig _3Q Vg
o
Fig. 6.151
zr =3+ 2025 51065700
3+ 3 /3
p =Y _4a5/-2657° A
6.71£26.57°
By current division rule,
1= 075/-2657°x— 2> —075.,6343° A

3+,3-3
Vi, = (= 3)(0.75.£63.43°) = 2.24/-26.57° V
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Step Il Calculation of Z, (Fig. 6.152) /:\3/8\/ ’\3/\§/2\, oA
Z.,=[G 173+ 3] (=3)
=3 £-53.12°Q
=(18-24)Q Sma  —-po
. oB
Step III  Calculation of Z,
For maximum power transfer, the load impedance Fig. 6.152
should be a complex conjugate of the source impedance.
Z,=(18+;24)Q
Step IV Calculation of P__(Fig. 6.153)
(1.8-j2.4)Q
A
L1
+
2.24 /-26.57°V r\) (1.8+)2.4)Q
B
Fig. 6.153
2 2
2.24
Pmax:|VTh‘ :| ‘ =07W
4R, 4x1.8
" S EIWICARNN  Find the value of Z, for maximum power transfer in the network shown and find maxi-
mum power.
70 ~j20 Q
Fig. 6.154
Solution
Step I Calculation of V., (Fig. 6.155) I I
100£0° 5Q 7Q
| = 0 =8.94/-63.43° A
5+ /10 + >
o 100 £0°V (~0 +Vrn -
, = 10020°_ 455 /7070 A S A B
7—-j20 10 Q —j20 Q

Fig. 6.155
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Vi, =V, —Vp =(8.94£-63.43°)(j10)—(4.72£70.7°)(—j20) = 71.76 £97.3° V
Step I  Calculation of Z, (Fig. 6.156)

5Q 7Q
AVAVAY, AVAVAY,
AO0— —OB
OO ||
j10Q 20 Q
Fig. 6.156

_5(j10) | 7(=j20) | 50£90°  140£-90°
5+ 710 7-,20 11.18£63.43° 21.19/-70.7°

=(10.23- j0.18) Q

Step III For maximum power transfer, the load impedance should be complex conjugate of the source
impedance.

Z,=(10.23 +0.18) Q

Step IV Calculation of P__ (Fig. 6.157)

(10.23 - j0.18) Q
A
L |

+
71.76 £97.3°V @ (10.23 +0.18) @

Fig. 6.157

_ I Vm P _ 17176

Py = =125.84 W
4R,  4x10.23

" SEIWTICWN  Find the value of load impedance Z, so that maximum power can be transferred to it in
the network of Fig. 6.158. Find maximum power.

3Q
AAAY

+
504450v@ :/ 2
_ L

2Q

10 Q

Fig. 6.158
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Solution
Step I Calculation of V_, (Fig. 6.159)

3Q
AVAVAY,
2Q
+ +0A
50 /45° V f\) Vo
— —OB
| 10 Q
Fig. 6.159
/450
1= 204%° 47/ 18430 A
3+2+ /10

Vin = (24 j10) 1= (2 + j10)(4.47/—18.43°) = 45.6 £60.26° V

Step Il  Calculation of Z, (Fig. 6.160)

3Q
A
2Q
Ao
Zt,
B o
10Q
Fig. 6.160
=220 o6t 072) 0
3+24 /10

Step III  Calculation of Z,
For maximum power transfer, the load impedance should be complex conjugate of the source
impedance.
Z,=(2.64-0.72) Q

Step IV Calculation of P (Fig. 6.161)

(2.64 +j0.72) Q
A
L
+
45.6 £60.26° V f\) (2.64 - j0.72) Q
B
Fig. 6.161
Vo > 145.6
Pmax=| w967 5601w

4R,  4x2.64
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" S EINI MRV Determine the load Z, required to be connected in the network of Fig. 6.162 for

maximum power transfer. Determine the maximum power drawn.

Q
CH00
4.,0°A 20 40 z,
Fig. 6.162
Solution
Step I Calculation of A\ (Fig. 6.163)
j1Q
00 oA
|1 |2 +
4 /0° A 2Q 4Q Vo
oB
Fig. 6.163

I, = 420°%—2 = 1315/-9.46° A
+ 1
Vi =41, = 4(1.315/-9.46°) = 5.26 /- 9.46° V

j1Q
7000 oA
Step Il Calculation of Z, (Fig. 6.164)
ira ] 20 4Q <17,
+
Zoy = 220D 47 17002 (1414 j043) Q
442+ 1 oB
Step III  Calculation of Z, Fig. 6.164
For maximum power transfer, the load impedance
should be the complex conjugate of the source impedance.
Z,=(141-;0.43)Q
Step IV Calculation of P__(Fig. 6.165)
(1.41+j0.43) Q
A
[
+
5.26 £/-9.46° V r\) (1.41 - j0.43) Q
B
Fig. 6.165
2 2
Pmax = |VTh ‘ = |526‘ =491'W

4R,  4x1.41
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" S EINIARER 1 the network shown in Fig. 6.166, find the value of Z, for which the power transferred
will be maximum. Also find maximum power.

5 £60° Q 10 £-30°Q
] ]
L L |

+

+
10 £0°V r\) B’ZL @5490°v

Fig. 6.166
Solution

Step I Calculation of V_, (Fig. 6.167)

5 £60°Q 10 £-30°Q
| 1
[ [

+
1040°V@

Applying KVL to the mesh,
10£0°—=(5£60°)1-(10£-30°)1-5290°=0
11.18£-26.57°—(11.18£-3.43°)I=0
I=1/-23.14° A

Writing V., equation,

10£0°—(5£60°) -V, =0
10£0°—-(5£60°)(1£—-23.14°) = V1, =0
Vmn =6.71£-26.56°V

Step I  Calculation of Z_, (Fig. 6.168)
5 2£60° Q 10 £-30°Q

L] L]
l

Zy,
il

Fig. 6.168

_(5£60°)(10£-30°)
5./60°+10./-30°

- = 4.47/33.43° Q =(3.73+ j2.46) Q
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Step III  Calculation of Z,
For maximum power transfer, the load impedance should be the complex conjugate of the source
impedance.

Z; =71 =(3.73— j2.46) Q
Step IV Calculation of P__ (Fig. 6.169)

(3.73+2.46)

0A
+ Iy
6.71 /-26.56°V r\) [] (3.73-2.46) Q
OB
Fig. 6.169

3 |VTh‘2 3 (6.71)°

P = = =3.02W
4R,  4x3.73

" SENI KR [ the network shown in Fig. 6.170, find the value of Z | S0 that power transfer from

the source is maximum. Also find maximum power.

+
10 £0°V r\)

Z 8Q

Fig. 6.170

Solution
Step I Calculation of V., (Fig. 6.171)

Applying Star-delta transformation (Fig. 6.172)
j9Q
Z|:Z2=Z3:w:j3g ng
79+ j9+ j9 10 £0°V r\) 7000
V., = Voltage drop across (8 +j3)CQ2 impedence \A>+
Viheo 8Q
B
4 ]
= (8+j3)& =8.54/-16.31°V

8+ j3+ 3 Fig. 6.171



6.62 Network Analysis and Synthesis

Z, z,
10 £0°V r\)
A v+
Tha™
5 8Q
Fig. 6.172
Step Il Calculation of Z, (Fig. 6.173)
O
j3Q
j3Q
j3 Q |::| - ZTh
8Q
O
Fig. 6.173
A4 i
Zoy = 3+L285) 55180 4900 = (0.72+ j5.46) Q
Jj3+8+ j3)

Step III  Calculation of Z,
For maximum power transfer, the load impedance should be the complex conjugate of the source
impedance.

Z, =77, =(0.72—- j5.46) Q
Step IV Calculation of P__ (Fig. 6.174)
(0.72 + j5.46) Q

OA
+ .
8.54 /-16.31°V r\) [] (0.72 - j5.46) Q
OB
Fig. 6.174

2
V 2
PmaX:| | _ B _snw
4R,  4x0.72
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" SEINI T  For the network shown in Fig. 6.175, find the value of Z, that will transfer maximum

power from the source. Also find maximum power.

4aSV, j10Q
+
100 £0°V 5Vx
Fig. 6.175
Solution 40 100
Step I Calculation of V_, (Fig. 6.176)
From Flg 6176, 100 £0°V 5V,
V, =41
Applying KVL to the mesh,
100£0°-41—-;10I-5V, =0
100£0°—-(4+j10) I-5(4) =0
I= 100 20 =3.854£-22.62°A
24+ j10
Writing V., equation,
100 £0°—4I-Vy, =0
100£0°—-4(3.85 £—22.62°) = V1, =0
Vr, =86.£3.95°V
Step Il Calculation of I, (Fig. 6.177)
From Flg 6177, N j10Q

4Q2V
Vx:4ll +

In /)
. +
Applying KVL to Mesh 1, 100 £0°V ID B l 5V,

100 £0°—41, =0 -
Il = 25 A

. Fig. 6.177
Applying KVL to Mesh 2,

—j101, =5V, =0
— 101, —=5(41;) = 0
— 101, —=5(100) = 0
I, = 50£90°A
Iy =1, -1, = 25-50£90° = 55.9./— 63.43°A
Step IIl  Calculation of Z.,
Vi, 86/3.95°
Iy 55.9/-63.43°

Ly, = =1.54267.38° Q= (0.59+ j1.42) Q
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Step IV Calculation of Z,
For maximum power transfer, Z; = Zy, = (0.59 — j1.42) Q

Step V' Calculation of P (Fig. 6.178)
(0.59+1.42) @

0 A
+
86 £3.95°V f\) |:] (0.59-/1.42) Q
OB
Fig. 6.178
2
AV 2
Prax = | Th‘ = (86) =3133.9W
AR,  4%0.59

X3 reciPrOCITY THEOREM

The Reciprocity theorem states that ‘/n a linear, bilateral, active, single-source network, the ratio of excitation
to response remains same when the positions of excitation and response are interchanged.’

" SENNCICRTW  Find the current through the 6 Q2 resistor and verify the reciprocity theorem.

AN || |
+
500V @ § 19 20
Fig. 6.179

Solution

Case I Calculation of current I when excitation and response are not interchanged (Fig. 6.180)

1Q —1'1||Q
NN N | | |
+ 1
5,00V (\) ,D j1Q ,> 20
Fig. 6.180

Applying KVL to Mesh 1,
5£0°—11; — jI{I; -1,) =0
1+, DI — j1I, =5£0° (1)
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Applying KVL to Mesh 2,
—]1(12 _Il)+j112 —212 =0
—JjiL +2I, =0 .
. : L : -..(i1)
Writing Egs (i) and (ii) in matrix form,
I+1 —j1|| L | _|5£0°
-j1 2 ||L] | 0
By Cramer’s rule,
1+ 1 5£0°
—jl1 0
I, =—"—=13945631° A
I+/1 —jl
—jl 2
I=1,=1394£5631° A
Case Il Calculation of current I when excitation and response are interchanged (Fig. 6.181)
10 —1'1] |Q
A% | |
ly /) 2Q
o)
I 3 I, £
5.20°V
Fig. 6.181
Applying KVL to Mesh 1,
-1 - j1 —1;) =0
(I+ /D1 = jlI; =0 (i)
Applying KVL to Mesh 2,
—]1(12 _Il)+j112 - 212 -520°=0
—jII] +2I, =-5£0° .. (11)

Writing Egs (i) and (ii) in matrix form,

1+71 =[] [ o
i1 2 ||| |-520°

By Cramer’s rule,

0 —jl
-5£0° 2
I, =————=1384-123.69° A
I+1 —Jl
—-jl 2

I=-1, =1.39256.31° A

Since the current I is same in both the cases, the reciprocity theorem is verified.
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" SEIICKRTM  [n the network of Fig. 6.182, find the voltage V_and verify the reciprocity theorem.

10 Q % B5Q
20 £90° A D N
) +
/5 Q —_joq v,
o
Fig. 6.182

Solution

Case I Calculation of voltage V_when excitation and response are interchanged. (Fig. 6.183)

10 Q 5 Q

20 £90°A G)

By current division rule,

10+ 5)
10+ j5)+(j5-j2)
V, =(—j2)I, =(-;2)(17.46£77.91°) = 34.92 £-12.09° V

I, =(20.£90°) =17.46271.91° A

Case Il  Calculation of voltage V_when excitation and response are interchanged (Fig. 6.184)

(e
+ I,
j5Q
10Q
Vy
5 Q 20 ( 1 ) 20 £90° A

Fig. 6.184

I, =(20£90°) (=/2) =3.12/-38.66°A
(=j2)+(0+ j5+j5)

V, =10+ j5)I, = (10+ j5)(3.12.4- 38.66°) = 34.88./—12.09°V

Since the voltage V_is same in both the cases, the reciprocity theorem is verified.
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" SENI XYW Find I and verify the reciprocity theorem for the network shown in Fig. 6.185.

. 20
3o MAQ 10 20
—{ I—’V\/V AA- |
+
10 £45°V ;49 5/39 20
Fig. 6.185

Solution

Case I Calculation of I when excitation and response are not interchanged (Fig. 6.186)

3q AQ 9 g4 20
—H—’\/W AN |
10 £45°V ;49 f) %BQ f) 20
I I
Fig. 6.186

Applying KVL to Mesh 1,
10£45° -3+ j4) 1, -4(1, -1,)=0

(7+ j4)1, — 41, =10£45° (1)
Applying KVL to Mesh 2,
-4 -1)-(1-72)1, -3, -13)=0
—4L +(5+ /DI - 313 =0 ...(ii)
Applying KVL to Mesh 3,

—j3(I3 1) -21, - j2I; =0
3L +(2+ 5 =0 ...(1i1)
Writing Eqgs (1), (i1) and (iii) in matrix form,
7+j4 4 0 I 10£45°
—4 S5+j1 =3 | L |= 0
0 -j3 2+j5(|Is 0
By Cramer’s rule,

7+ j4 -4 10£45°
-4 5+l 0

0 —-Jj3 0
I; = , =0.704£30.72° A
7+j4 -4 0
-4 5+j1 -=j3
0 -j3 2+j5

I=15=0.704£30.72°A
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Case Il Calculation of I when excitation and response are interchanged (Fig. 6.187)

s AQ L g 20
4||—«/vx AN
20
EPEISE S}
Iy L I +10445°v
Fig. 6.187

Applying KVL to Mesh 1,
-G+/jHL -4, -1,)=0

(7+j4H)1,-41, =0 ..(1)
Applying KVL to Mesh 2,
-4 -1)-(1-,2) 1, - j3(I, -13)=0
4L +(5+ j1)I, - j3I3=0 ...(11)
Applying KVL to Mesh 3,
—j3(I5-1,) =213 — j2I;+10£45° =0
—Jj3L, +(2+ j5)1; =10£45° ...(111)
Writing Eqgs (1), (ii) and (iii) in matrix form,
7+j4 4 0 L 0
-4  5+1 -3 ||L|= 0
0 -3 2451 10£45°
By Cramer’s rule,
0 —4 0

0  5+j1 -3
10£45° —j3 245

I, = , =0.704£30.72°A
7+j4 -4 0
-4 5+ -3
0 -j3 245

I1=1,=0.704£30.72°A

Since the current I is same in both the cases, the reciprocity theorem, is verified.

XA miLLmMAN’S THEOREM

Millman’s theorem states that *If there are n voltage sources V,, V,. ... V with internal impedances Z,
Z, ... Z respectively connected in parallel then these voltage sources can be replaced by a single voltage
source V and a single series impedance Z .

ViYi+V, Y, +..+V, Y,
Y +Y,+...+Y,
1 1

Zm . e—
Y, Yi+Yo+...+Y,

Vin
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" SEINI KRN  Find the current through the 40 Q resistor for the network shown in Fig. 6.188.

300 10Q
~j20 Q j20Q § 400
+ +
10 £0°V 20 £0°V
Fig. 6.188

Solution

Step I Calculation of V|

1

VY4 VoY (1040")(3()-2())*(2040")(1():-20)
vy, =Nty J I _182./-15.95°V
Y1+Y2 1 1

+
30— j20 10+ 20

Step I  Calculation of Z,

Y,, Y +Y, 1 1

+
30— j20 10+ 20

=20.15£29.74° Q

Step III  Calculation of I, (Fig. 6.189)

20.15 £29.74° Q
¥ |

L
18.2 £-15.95°V

Fig. 6.189
_182/-15.95°
20.15.£29.74° + 40

" SETI NN Find the current I in the network shown in Fig. 6.190.

~j20 ©
!
e

I, =0.31£-2581°A

j20 Q@
B0

30 Q

+
10 £0°V

§4OQ

10Q

+
20 £0°V

Fig. 6.190
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Solution The network is redrawn as shown in Fig. 6.191.
|

—j20 Q J_

§4OQ
30 Q

+

+
10 £0°V @OV 20 £0°V

Fig. 6.191

j20Q

10 Q

Step I Calculation of V

viY; + V.Y 0(410J+(20400)(10+1 '20]
A PO I 1486/-218°V
Y1 +Y2 L-I— 1
40 10+ 520
Step Il Calculation of Z
Zm :L: ! = ! =16.61£41.63°Q
Ym Yl +Y2 L-I— 1
40 10+ 520

Step III Calculation of I (Fig. 6.192)

—j20 Q —

16.61 £41.63°Q

+
14.86 £/-21.8°V

Fig. 6.192
_ 10-14.86/-21.8°
30— j20+16.61241.63°

=0.15£136.47° A

[ Example 6.61

Apply the dual Millman theorem and find the power loss in the (2 + j2) £2impedance

10 A 20 A
> >
AVAYAY AVAYAY
40 50
AVAvAY, 7000
20 20

Fig. 6.193



6.9 Millman’s Theorem 6.71
Solution
Step I Calculation of T

_LZ, +1,Z, _(10)(H)+(20)(5)
7,+7, 445

=15.56 A

m

Step Il Calculation of Z
Z,=7,+7, =4+5=9Q

Step III Calculation of P (Fig. 6.194)

I

2Q
15.56 A D ;QQ

20
Fig. 6.194
By current division rule,
I, =15.56 XL =1253£4-103° A
9+2+ ;2

P=13R, =(12.53)>x2=314 W

" SENI NNV [n the network shown in Fig. 6.195, what load Z, will receive the maximum power.

Also find maximum power.

50 j5Q 3o A0
OO |
+ +
50 £0°V E Z, 25 /90°V
Fig. 6.195
Solution
Step I Calculation of V|
1 1
N (50400)(5+ ,5)+(25490°)( : )
v, —ntval J J*) _9.81/-78.69°V
Y1 + YZ 1 + 1
54+4j5 3-j4
Step I  Calculation of Z,
1 1 1
Z,=—-= = =439£-1526°Q=(4.23-/1.15)Q
Ym Yl + Y2 1 1

+—
54+j5 3-j4



6.78 Network Analysis and Synthesis

Step II Calculation of change in current by compensation theorem

SZ=(1+ j)—(5+ j2)=(-4— j) Q

2.94 /-11.31° Q

[
I
V. =1,0Z= (1442 —-25° (-4 - j1)=5.942169.04° V .
The compensating network is shown in Fig. 6.208.
j2 Q
st 5.94.£169.04° /D !
L=- = A
294/-11.31°+5+j2—-4—-j1 S, a-ja
=1.52/-17.18° A .
5.94 £169.04°V
E . Fig. 6.208
Xercises
MESH ANALYSIS
6.1 Find the current through the 3 + j4 Q I, 2Q —j4 Q 5Q
impedance in Fig. 6.209. || MV
N Y,
5 Q 50 £45°V 2Q
3Q 1000V 7 A 5 %
+ —_
Ao g 100 25 Q Fig. 6.211
[11.6 £113.2° A]
Fig. 6.209 6.4 In the network of Fig.6.212, find V, which
[0] results in zero current through the 4 Q
resistor.
6.2 In the network of Fig. 6.210, find V. 50 40 50
2Q 2Q 2Q
+ + +
+ 50 £0°V % 2Q ——-j2Q V,
10 £0°V %jzsz §j29 j2Q Vg A N
Fig. 6.212
Fig. 6.210

[1.56 £128.7° V]

6.3 Find the current I, in the network of Fig.
6.211.

[26.3 £113.2° V]

NODE ANALYSIS

6.5 For the network shown in Fig. 6.213, find the
voltage V ..



5Q 4

+ 5Q

100 £45°V
N j20 Q

§20§2

B

Fig. 6.213
[75.4 £55.2° V]

6.6 Find the voltages at nodes 1 and 2 in the
network of Fig. 6.214.

109@/\3\%’@

50 £0°V B Q —_— -j10Q

Fig. 6.214
[15.95 £49.94° V, 12.9 £55.5° V]

6.7 In the network of Fig. 6.215, find the current
in the 10 £30° V source.
50 —2Q 50
|
|

2Q
+

10430°v_r\)

SQ§ SQ§

2Q

T

[1.44 £38.8° A]

SUPERPOSITION THEOREM

6.8 For the network shown in Fig. 6.216, find the
current in the 10 Q resistor.

5Q

Fig. 6.215

10 Q

—j5Q

100 £0°V
50 £30°V

Fig. 6.216
[73.4 £/-21.84° A]

6.79

Exercises

6.9 In the network of Fig. 6.217, find the current
through capacitance.

20 £0°V L _j5 0

Fig. 6.217

[4.86 £80.8° A]

THEVENIN’S THEOREM

6.10 Obtain Thevenin’s equivalent network for the
network shown in Fig. 6.218.

j20 Q 500
40 Q
+
50 £0°V () A B
1000 Q
1000 Q ,
—~j400 Q
Fig. 6.218

[0.192 £-43.4°V, 88.7 £11.55° Q]

6.11 Obtain Thevenin’s equivalent network for

Fig. 6.219.
10Q j16Q J5Q
+
10.20°V () _
40 R 10 £90°V
7000 o
Fig. 6.219
[11.17 £-63.4° V, 10.6 £45° Q]
NORTON’S THEOREM
6.12 Find Norton’s equivalent network for Fig.
6.220.
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50 £0°V

)
e

- 50
s 100

. A B
/5 Q 5Q

)
T
50 £90°V

Fig. 6.220
[2.77 £-33.7° A, 2.5+ 12.5 Q]

6.13 Find the current through the (3 + j4) Q
impedance in the network of Fig. 6.221.

5Q

B Q

+
50 £90°V r\)

+
Q\) 50 £0°V
j4 0 -

Fig. 6.221
[8.3 £85.2° A]

Objective-Type Questions

MAXIMUM POWER TRANSFER
THEOREM

6.14 Determine the maximum power delivered to
the load in the network shown in Fig. 6.222.

10Q J15Q 50 —j6 Q
3Q
50 £0° A —=-j10Q AH—V Z
j4Q
Fig. 6.222
[1032.35 W]

6.15 For the network shown in Fig. 6.223, find the
value of Z, that will receive the maximum
power. Determine also this power.

. 50
N
50 £0°V @

4Q

—139/\

Fig. 6.223
[3.82 —j1.03 Q, 54.5 W]

6.1 In Fig. 6.224, the equivalent impedance seen
across terminals a, b, is

O
20 4 Q
3 Q
Zeq 00
= Ly
—j4 Q
O
Fig. 6.224
16 8
a) — Q b) - Q
(@) 3 (b) 3

(d) none of the above

A
© (§+j12J Q

6.2 The Thevenin equivalent voltage V.
appearing between the terminals 4 and B of
the network shown in Fig. 6.225 is given by

3Q

NVVV OA
+
100 20°V () EJQ — 6 %/‘4 Vin
oB
Fig. 6.225
(@) j16(3 —j4) (b) j16(3 +j4)
(c) 163 +j4) (d 16(3-j4)

6.3 A source of angular frequency of 1 rad/s has a
source impedance consisting ofa 1 Q resistance



	Chapter 03
	Chapter 06

