
 3.1   INTRODUCTION

In Chapter 2, we have studied elementary network theorems like Kirchhoff’s laws, mesh analysis and node 

analysis. There are some other methods also to analyse circuits. In this chapter, we will study superposition 

theorem, Thevenin’s theorem, Norton’s theorem, maximum power transfer theorem, reciprocity theorem, 

Millman’s theorem, Tellegen’s theorem, substitution theorem and compensation theorem. We can fi nd 

currents and voltages in various parts of the circuits with these methods.

 3.2    SUPERPOSITION THEOREM

It states that ‘in a linear network containing more than one independent source and dependent source, 

the resultant current in any element is the algebraic sum of the currents that would be produced by each 

independent source acting alone, all the other independent sources being represented meanwhile by their 

respective internal resistances.’

The independent voltage sources are represented by their internal resistances if given or simply with zero 

resistances, i.e., short circuits if internal resistances are not mentioned. The independent current sources are 

represented by infi nite resistances, i.e., open circuits.

The dependent sources are not sources but dissipative components—hence they are active at all times. A 

dependent source has zero value only when its control voltage or current is zero.

A linear network is one whose parameters are constant, i.e., they do not change with voltage and current.

Explanation Consider the network shown in Fig. 3.1. Suppose we have to fi nd current I
4
 through 

resistor R
4
.

R1 R3

R2 R4V I

Fig. 3.1 Network to illustrate superposition theorem
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3.2 Network Analysis and Synthesis

The current fl owing through resistor R
4
 due to 

constant voltage source V is found to be say I
4
Ä (with 

proper direction), representing constant current source 

with infi nite resistance, i.e., open circuit.

The current fl owing through resistor R
4
 due to 

constant current source I is found to be say I
4
″ (with 

proper direction), representing the constant voltage 

source with zero resistance or short circuit.

The resultant current I
4
 through resistor R

4
 is found 

by superposition theorem.

I I I4 4 4+I4I ′ ″

Steps to be followed in Superposition Theorem

1. Find the current through the resistance when only 

one independent source is acting, replacing all 

other independent sources by respective internal 

resistances.

2. Find the current through the resistance for each of the independent sources.

3. Find the resultant current through the resistance by the superposition theorem considering magnitude and 

direction of each current.

 Example 3.1  Find the current through the 2 W  resistor in Fig. 3.4.

40 V

20 V

10 V

5 Ω 2 Ω

10 Ω

Fig. 3.4

Solution

Step I When the 40 V source is acting alone (Fig. 3.5)

40 V

5 Ω 2 Ω

10 Ω

I ′I

Fig. 3.5

By series parallel reduction technique (Fig. 3.6),

I = =
40

5 1+ 67
6

.
A  

From Fig. 3.5, by current-division rule,

′ = ×
+

=I 6
10

10 2
5 A ( )→

R1 R3

R2
R4

I4′

V

Fig. 3.2 When voltage source V is acting alone

R1 R3

R2 R4
I

I4′′

Fig. 3.3 When current source I is acting alone

40 V

5 Ω

1.67 Ω

I

Fig. 3.6
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Step II When the 20 V source is acting alone (Fig. 3.7)

20 V5 Ω 2 Ω

10 Ω

I ′′I

Fig. 3.7

By series–parallel reduction technique (Fig. 3.8),

I = =
20

5 1+ 67
3

.
A

From Fig. 3.7, by current-division rule,

′′ = ×
+

= − →I 3
10

10 2
2 A5 ( )← = 2 5 A ( )

Step III When the 10 V source is acting alone (Fig. 3.9)

10 V

5 Ω 2 Ω

10 Ω

Fig. 3.9

By series–parallel reduction technique (Fig. 3.10),

′′′ = =I
10

3 33 2+
1 A88 ( )→  

Step IV By superposition theorem,

I I I I′ + ′′ ′′′ = =5 2− 5 1+ 88 4. .5 1+ . A38 ( )→

 Example 3.2  Find the current through the 1 W  resistor in Fig. 3.11.

100 V

50 V 40 V

4 Ω

2 Ω1 Ω

Fig. 3.11

20 V5 Ω

1.67 Ω

I

Fig. 3.8

10 V

2 Ω

3.33 Ω

I ′′′

I ′′′

Fig. 3.10
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Solution

Step I When the 100 V source is acting alone (Fig. 3.12)

100 V

4 Ω

2 Ω1 Ω

I

I ′

Fig. 3.12

By series–parallel reduction technique (Fig. 3.13),

I = =
100

4 0+ 67
21

.
. A41  

From Fig. 3.12, by current-division rule,

I ′ = × = ↓21 41
2

2 1+
. ×41 ( )

Step II When the 50 V source is acting alone (Fig. 3.14)

50 V

4 Ω

2 Ω
1 Ω

Fig. 3.14

By series–parallel reduction technique (Fig. 3.15),

′′ = = ↑ ↓I
50

1 1+ 33.
. A46 ( )↑ = 21.46 A( )−

Step III When the 40 V source is acting alone (Fig. 3.16)

40 V

4 Ω

2 Ω1 Ω

I ′′′

I

Fig. 3.16

100 V

4 Ω

0.67 Ω

I

Fig. 3.13

50 V

1 Ω

1.33 Ω

I ′′

Fig. 3.15
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By series–parallel reduction technique (Fig. 3.17),

I =
+

=
40

0 8 2
14. A29

From Fig. 3.16, by current-division rule,

′′′ = × = ↓I 14 29
4

4 1+
. ×29 ( )↓

Step IV By superposition theorem,

I I I I′ + ′′ ′′′ = − + = ↓14 27 21 46 11 43 4 24. .27 21 . .43 4 ( )↓A

 Example 3.3  Find the current through the 8 W  resistor in Fig. 3.18.

4 V 6 V

5 Ω 12 Ω10 Ω

15 Ω 8 Ω

Fig. 3.18

Solution

Step I When the 4 V source is acting alone (Fig. 3.19)

4 V

5 Ω 12 Ω10 Ω

15 Ω 8 Ω

I ′

I1I

Fig. 3.19

By series–parallel reduction technique (Fig. 3.20),

(a)

4 V

5 Ω 10 Ω

15 Ω 4.8 Ω

I1I

(b)

4 V

5 Ω

15 Ω 14.8 Ω

I1I

I = =
4

5 7+ 45
0

.
. A32  

From Fig. 3.20(b), by current-division rule,

I1 0 32
15

15 14 8
0= ×0 32

+
=

.
. A16  

From Fig. 3.19, by current-division rule,

′ = ×
+

= ↓I 0 16
12

12 8
. ×16 ( )

40 V

2 Ω
0.8 Ω

I

Fig. 3.17

(c)

4 V

5 Ω

7.45 Ω

I

Fig. 3.20



3.6 Network Analysis and Synthesis

Step II When the 6 V source is acting alone (Fig. 3.21)

6 V

5 Ω 12 Ω10 Ω

15 Ω 8 Ω

Fig. 3.21

By series–parallel reduction technique (Fig. 3.22),

(a)

6 V

10 Ω 12 Ω

8 Ω3.75 Ω

(b)

6 V

12 Ω

8 Ω13.75 Ω

I ′′

I

I =
+

=
6

12 5 06
0. A35

From Fig. 3.22(b), by current division rule,

′′ = ×
+

= ↓I 0 35
13 75

13 75 8

.

.
( )↓

Step III By superposition theorem,

I I I′ + ′′ = + = ↓0 096 0 22 =. .+096 0 ( )↓  

 Example 3.4  Find the current through the 4 W resistor in Fig. 3.23.

40 V 8 A

12 Ω 4 Ω

5 Ω 3 Ω

Fig. 3.23

Solution

Step I When the 40 V source is acting alone (Fig. 3.24)

I

40 V 5 Ω

12 Ω 4 Ω

3 Ω

I ′

Fig. 3.24

(c)

6 V

12 Ω

5.06 Ω

I

Fig. 3.22
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By series–parallel reduction technique (Fig. 3.25),

(a)

40 V

12 Ω

5 Ω 7 Ω

I

(b)

40 V

12 Ω

2.92 Ω

II ′

Fig. 3.25

I =
+

=
40

12 2 92
2. A68

From Fig. 3.25(a), by current-division rule,

I ′ = × = → − ←2 68
5

5 7+
1 12 1→. ×68 A( ) 2−1− 1 A ( )

Step II When the 8 A source is acting alone (Fig. 3.26)

8 A

12 Ω 4 Ω

5 Ω 3 Ω

Fig. 3.26

By series–parallel reduction technique (Fig. 3.27),

(a)

8 A

4 Ω

3 Ω3.53 Ω

I ′′

(b)

8 A3 Ω7.53 Ω

I ′′

Fig. 3.27

I ″ = × =8
3

7 53 3+
2 A28 ( )←

Step III By superposition theorem,

I I I′ + ′′ = − =1 12 2+ 28 1. .12 2+ . A16 ( )←  
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 Example 3.5  Find the current in the 10 W resistor in Fig. 3.28.

10 V

4 A

1 Ω
5 Ω10 Ω

2 Ω

Fig. 3.28

Solution

Step I When the 10 V source is acting alone (Fig. 3.29)

10 V

1 Ω
5 Ω10 Ω

2 Ω

Fig. 3.29

By series–parallel reduction technique (Fig. 3.30),

10 V

(a) (b)

1 Ω
7 Ω10 Ω

I ′′

I

10 V

1 Ω
4.12 Ω

I

Fig. 3.30

I = =
10

1 4+ 12
1

.
. A95

From Fig. 3.30 (a), by current-division rule,

′ = × = ↓I 1 95
7

7 1+ 0
. ×95 ( )↓  
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Step II When the 4 A source is acting alone (Fig. 3.31)

4 A1 Ω 5 Ω10 Ω

2 Ω

I ′′

I

Fig. 3.31

By series–parallel reduction technique (Fig. 3.32),

4 A

(a)

0.91 Ω 5 Ω

2 Ω I

4 A

(b)

2.91 Ω 5 Ω

I

Fig. 3.32

I = × =4
5

2 91 5+
2. A53  

From Fig. 3.31, by current-division rule,

′′ = × − ↓I 2 53
1

1 1+ 0
. ×53 ( )  

Step III By superposition theorem,

I I I′ + ′′ = + = ↓0 8 0 23 =. .+8 0 ( )↓

 Example 3.6  Find the current through the 8 W  resistor in Fig. 3.33.

25 A5 A

8 Ω

12 Ω 30 Ω

Fig. 3.33
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Solution

Step I When the 5 A source is acting alone (Fig. 3.34)

I ′ = × = →5
12

12 8 3+ + 0
1. (2 )

Step II When the 25 A source is acting alone (Fig. 3.35)

′′ = ×
+ +

= →I 25
30

30 12 8
15 A ( )

Step III By superposition theorem,

I I I′ + ′′ = + =1 2 15 16 2. +15 ( )→A
 

 Example 3.7  Find the current through the 4 W  resistor in Fig. 3.36.

20 V

5 A

4 Ω

6 Ω
5 Ω

6 Ω

2 Ω

Fig. 3.36

Solution

Step I When the 5 A source is acting alone (Fig. 3.37)

5 A

4 Ω

6 Ω
5 Ω

6 Ω

2 Ω

Fig. 3.37

By series–parallel reduction technique (Fig. 3.38),

5 A 30 Ω12 Ω

8 ΩI ′

Fig. 3.34

25 A30 Ω12 Ω

8 ΩI ′′

Fig. 3.35
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5 A 4 Ω

6 Ω

2.73 Ω

2 Ω

5 A

(b)(a)

2 Ω

8.73 Ω 4 Ω

I ′

Fig. 3.38

′ = × = ↓I 5
8 73

8 73 4+
( )  

Step II When the 20 V source is acting alone (Fig. 3.39)

20 V

4 Ω

6 Ω

5 Ω

6 Ω

2 Ω

I ′′I

Fig. 3.39

By series–parallel reduction technique (Fig. 3.40),

(a)

20 V

5 Ω

6 Ω 10 Ω

I

(b)

20 V

5 Ω

3.75 Ω

II ′′

Fig. 3.40

I = =
20

5 3+ 75
2

.
. A29

From Fig. 3.40 (a), by current-division rule,

′′ = × = ↓I 2 29
6

6 1+ 0
. ×29 ( )↓

Step III By superposition theorem

I I I′ + ′′ = = ↓3 43 0+ 86. .3 0+ ( )  
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 Example 3.8  Find the current through the 3 W  resistor in Fig. 3.41.

5 A

5 Ω

10 Ω

2 Ω

3 Ω

4 Ω 20 V

Fig. 3.41

Solution

Step I When the 5 A source is acting alone (Fig. 3.42)

5 A

5 Ω

10 Ω

2 Ω

3 Ω

4 Ω

Fig. 3.42

By series–parallel reduction technique (Fig. 3.43),

′ = ×
+

= ↓I 5
15

15 2 3+
( )

Step II When the 20 V source is acting alone (Fig. 3.44)

5 Ω

10 Ω

2 Ω

3 Ω

4 Ω 20 V

I ′′ I

Fig. 3.44

By series–parallel reduction technique (Fig. 3.45),

(a) (b)

20 V4 Ω20 Ω

I ′′ I

20 V3.33 Ω

I

Fig. 3.45

5 A 3 Ω15 Ω

2 ΩI ′

Fig. 3.43
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I = =
20

3 33
6 A

From Fig. 3.45(a), by current-division rule,

′′ = ×
+

= ↑ ↓I 6
4

20 4
A1= −( )↑↑↑ ( )↓

Step III By superposition theorem,

I I I′ + ′′ = = ↓3 75 1−.75 1 ( )

 Example 3.9  Find the current in the 1 W  resistors in Fig. 3.46.

4 V 3 A

1 A

3 Ω

1 Ω

2 Ω

Fig. 3.46

Solution

Step I When the 4 V source is acting alone (Fig. 3.47)

′ = = ↓I
4

2 1+
( )↓

Step II When the 3 A source is acting alone (Fig. 3.48)

By current-division rule,

′′ = × = ↓I 3
2

1 2+
( )↓

Step III When the 1 A source is acting alone (Fig. 3.49)

1 A

3 Ω

1 Ω

2 Ω

Fig. 3.49

4 V

3 Ω

1 Ω

2 Ω

I ′

Fig. 3.47

3 Ω

3 A1 Ω

2 Ω

I ′′

Fig. 3.48
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Redrawing the network (Fig. 3.50),

By current-division rule,

′′′ = × = ↓I 1
2

2 1+
( )↓

Step IV By superposition theorem,

I I I I′ + ′′ ′′′ = + ↓1 33 2+ 0 66 4=. .+33 2+ 0 ( )↓A

 Example 3.10  Find the voltage V
AB

 in Fig. 3.51.

6 V

5 A 10 V

A

B

5 Ω

VAB

+

−

Fig. 3.51

Solution

Step I When the 6 V source is acting alone (Fig. 3.52)

VABV ′ =B 6 V

6 V

A

VAB

B

5 Ω

+

−

′

Fig. 3.52

Step II When the 10 V source is acting alone (Fig. 3.53)

Since the resistor of 5 Ω is shorted, the voltage across it is zero.

VABV ″ =AB 10 V

Step III When the 5 A source is acting alone (Fig. 3.54)

Due to short circuit in both the parts,

VABV ″′ = 0

Step IV By superposition theorem,

V V V VABV ABV ABV ABV+VABV =VABV =′ ″V+ ″′ 6 1+ 0 0+ 16 V

1 A

1 Ω2 Ω
3 Ω

I ′′′

Fig. 3.50

10 V

A

VAB

B

5 Ω

+

−

′′

Fig. 3.53

A

VAB

B

5 Ω

5 A

+

−

′′′

Fig. 3.54
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 Example 3.11  Find the current through the 5 W resistor in Fig. 3.55.

24 V 2 A 36 V

5 Ω 10 Ω

20 Ω

Fig. 3.55

Solution

Step I When the 24 V source is acting alone (Fig. 3.56)

24 V

5 Ω 10 Ω

20 Ω

Fig. 3.56

By series–parallel reduction technique (Fig. 3.57),

′ = = →I
24

5 6+ 67
2 → 06

.
. (06 ) .2) ( )←A06→( ) .2= −

Step II When the 2 A source is acting alone 

By series–parallel reduction technique (Fig. 3.58),

2 A

(a) (b)

5 Ω 10 Ω

20 Ω 2 A

5 Ω

6.67 Ω

I ′′

Fig. 3.58

By current-division rule,

I ″ = × = ←2
6 67

5 6+ 67
1

.
. (14 )

Step III When the 36 V source is acting alone (Fig. 3.59)

By series–parallel reduction technique,

36 V

(a) (b)

5 Ω 10 Ω

20 Ω

I ′′′ I

36 V

10 Ω

4 Ω

I

Fig. 3.59

24 V

5 Ω

6.67 Ω

I ′

Fig. 3.57
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I =
+

=
36

10 4
2. A57

By current-division rule,

′′′ = ×
+

=I 2 57
20

20 5
2 06. ×57 ( )←A

Step IV By superposition theorem,

I I I I′ + ′′ ′′′ = − + =2 06 1+ 14 2 06 1= 14. .06 1+ .06 ( )←A

 Example 13.12  Find the current through the 4 W resistor in Fig. 3.60.

5 A 2 A

6 V

2 Ω 4 Ω

Fig. 3.60

Solution

Step I When the 5 A source is acting alone (Fig. 3.61)

By current-division rule,

′ = × = ↓I 5
2

2 4+
( )

Step II When the 2 A source is acting alone (Fig. 3.62)

By current-division rule,

I ″ = × = ↓2
2

2 4+
( )

Step III When the 6 V source is acting alone (Fig. 3.63)

Applying KVL to the mesh,

− ′′′ ′′′

′′′ = − ↓

2 6 4 0′′′ =

1

l l′′′ −6′′′ − 4

I A ( )

Step IV By superposition theorem,

I I I I′ + ′′ ′′′ = − ↓1 67 0+ 67 1 1=. .67 0+ . (34 )

5 A 4 Ω2 Ω

I ′

Fig. 3.61

2 A 4 Ω2 Ω

I ′′

Fig. 3.62

6 V

4 Ω2 Ω

I ′′′

Fig. 3.63
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EXAMPLES WITH DEPENDENT SOURCES

 Example 3.13  Find the current through the 6 W resistor in Fig. 3.64.

15 V 10 V3I

6 Ω 8 ΩI

Fig. 3.64

Solution

Step I When the 15 V source is acting alone (Fig 3.65)

From Fig. 3.65,

′I I′ = 1   …(i)

Meshes 1 and 2 will form a supermesh. 

Writing current equation for the supermesh,

I I I2 1I 13 3I=I1II ′

4 01 2   …(ii)

Applying KVL to the outer path of the supermesh,

15 6 8 01 28− 6 =I88

6 8 151 28I8 =2I88  …(iii)

Solving Eqs (ii) and (iii),

I1 0= . A39

I2 1= . A59

′ = →I I′ = 1 0. (39 )

Step II When the 10 V source is acting alone (Fig 3.66)

From Fig. 3.66,         

′′I I′′ = 1  ...(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I I2 1I 13 3I=I1II ′′  

4 01 2   …(ii)

Applying KVL to the outer path of the supermesh,

− + =6 8 10 01 28I88−  

6 8 101 28I8 =2I88   …..(iii)

15 V 3I ′

6 Ω 8 ΩI ′

I1 I2

Fig. 3.65

10 V3I ′′

6 Ω 8 ΩI ′′

I1 I2

Fig. 3.66
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Solving Eqs (ii) and (iii),

I

I

I I

1

2

1

0 26

1 05

0

=
=

′′ =I1 →. (26 )

A

A

Step III By superposition theorem,

I I I= +I = = →′ ″I+ 0 39 0+ 26 0. .39 0+ . (65 )  

 Example 3.14  Find the current I
x
 in Fig. 3.67.

20 V 30 A

5 Ω 1 ΩIx

4Ix
+
−

Fig. 3.67

Solution

Step I When the 30 A source is acting alone (Fig. 3.68)

From Fig. 3.68,

I Ix′ 1  …(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I1 2I I 30=I2I  …(ii)

Applying KVL to the outer path of the supermesh,

− −
− =
5 1 4 0=

5 4− 0
1 2

1 2 1

I11−
− I1

x′

9 01 2  …(iii)

Solving Eqs (ii) and (iii),
I

I

I Ix

1

2

1

3

27

3

=
= −

=I1

A

A

A′ ( )→

Step II When the 20 V source is acting alone (Fig. 3.69)

Applying KVL to the mesh,

20 5 4 0

2

− 5 − 4

= →2

I1

I
x x1I1 x

x

″ ″1I1 ″
″ A( )

Step III By superposition theorem,

I I Ix x x →I IxI x′ +x ″ 3 + 2 5 Α( )  

30 A

5 Ω 1 ΩIx

4Ix
+
−I1 I2

′

′

Fig. 3.68

20 V

5 Ω 1 ΩIx′′

4Ix
′′+

−

Fig. 3.69
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 Example 3.15  Find the current I
1
. in Fig. 3.70.

2 Ω
10 Ω

5 V

2 A

Vx

I1

4Vx
+ −

Fig. 3.70

Solution

Step I When the 5 V source is acting alone (Fig 3.71)

From the fi gure,

V
x
 = 5 – 10I

1
′

Applying KVL to the mesh,

 5 – 10I
1
′ – 4V

x
 – 2I

1
′ = 0 

 5 – 10I
1
′ – 4 (5 – 10I

1
′) – 2I

1
′ = 0 

 5 – 10I
1
′ – 20 + 40I

1
′ – 2I

1
′ = 0 

I1

15

28
0′ =1 = ↑0. (554 )

Step II When the 2 A source is acting alone (Fig 3.72)

From Fig . 3.72,

V IxVV 10 1′  …(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I2 1I 2=I1II ′  …(ii)

Applying KVL to the outer path of the supermesh,

− =
− =

10 4 2 0

10 2− 0

1 22−

1 2

I 41 − 4 I

I 41 − 4 I

x′
′ ′44( )10101− 0 ′1010

30 2 01 22I 21 2′1  …(iii)

Solving Eqs (ii) and (iii),

I

I

1

2

0

2 14

= ↑0

=
. (114 )

. A

Step III By superposition theorem,

I I I1 1 1 0 54 0 14 0+I1II = 0 54 = ↑0′ ″I+ . .54 054 . (6868 )  

2 Ω
10 Ω

5 V

Vx

I1′

4Vx
+  −

Fig. 3.71

2 Ω10 Ω 2 A

Vx

I1′

4Vx
+ −

I1′ I2

Fig. 3.72



3.20 Network Analysis and Synthesis

 Example 3.16  Determine the current through the 10 W  resistor in Fig. 3.73.

Vx

10Vx+−

100 V 10 A

10 Ω

5 Ω

+

−

Fig. 3.73

Solution

Step I When the 100 V source is acting alone (Fig. 3.74)

From the fi gure,

V
x
 = 5I′

Applying KVL to the mesh,

100 – 10I′ + 10V
x
 – 5I′ = 0

100 – 10I′ + 10(5I′) – 5I′ = 0

′ = − →I 2. (86 )

Step II When the 10 A source is acting alone (Fig. 3.75)

From Fig. 3.75,

VxVV ( )I II1 2I−  …(i)

Applying KVL to Mesh 1,

−
− =

10 10 5 0=
10 10 − 0

1 − 5

11 0 52

I V+101 +10

I +101 +10 55−
x ( )1 2−

{ (555 )} ( )−1 2I1 I

35 45 01 245I I451 45 =2I4545  …(ii)

For Mesh 2,

I2 10= −  …(iii)

Solving Eqs (ii) and (iii),

I

I

1

2

12

10

= −
= −

. A86

A
 

′′ = − →I I′′ = 1 12. (86 )  

Step III By superposition theorem,

I I I′ + ′′ = − − →2 86 1− 2 86 1= − 5. .86 12 . (72 )

 Example 3.17  Find the current I in the network of Fig. 3.76.

17 V

1 A

3 Ω

5Vx
+
−

Vx2 Ω

4 Ω+

−

I

Fig. 3.76

Vx

10Vx+ −

100 V

10 Ω

5 Ω

+

−

I ′

Fig. 3.74

Vx

10Vx+−

10 A

10 Ω

5 Ω

+

−

I1 I2

I ′′

Fig. 3.75
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Solution

Step I When the 17 V source is acting alone (Fig. 3.77)

From the fi gure,

V
x
 = –2I′

Applying KVL to the mesh,

–2I′ – 17 – 3I′ – 5V
x
 = 0

–2I′ – 17 – 3I′ – 5(–2I′) = 0

I′ =3.4 A (→) 

Step II When the 1 A source is acting alone (Fig. 3.78)

From Fig. 3.78,

V IxVV 2 1  …(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I2 1I 1=I1II  …(ii)

Applying KVL to the outer path of the supermesh,

− −
− − =

2 3 5 0=
2 3 5 0

1 23

1 23

I33− V

I33−
xV

( )2− 1I1

8 3 01 23I33 =2I33   …(iii)

Solving Eqs (ii) and (iii),

I

I

I I

1

2

2

0 6

1 6

1

=
=

′′ =I2 →. (6 )

A

A

Step III By superposition theorem,

I = I′ + I′′ = 3.4 + 1.6 = 5 A (→)

 Example 3.18  Find the voltage V
1
 in Fig. 3.79.

20 V5 A4I

1 Ω 4 ΩI

+
−

V1

+

−

Fig. 3.79

Solution

Step I When the 5 A source is acting alone (Fig. 3.80)

From Fig. 3.80,

I
V

=
′1VV

4

Applying KCL at Node 1,

′
+

′
=

V I′ V1 1+
V IV − VV4

1 4
5

17 V 3 Ω

5Vx
+
−

Vx2 Ω
+

−

I ′

Fig. 3.77

1 A

3 Ω

5Vx
+
−

Vx2 Ω

4 Ω+

−

I ′′

I1 I2

Fig. 3.78

5 A4I

1 Ω 4 ΩI

+
−

V1
′

Fig. 3.80
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′−
′⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+
′
=V

V V′⎞
1VV

1 1⎞⎞⎞ +
V VV V⎞⎞⎞

4
4 4⎠⎠⎠

5

V
1
′ = 20 V

Step II When the 20 V source is acting alone (Fig. 3.81)

Applying KVL to the mesh,

 4I – I – 4I – 20 = 0

 I = –20 A

 V
1
′′ = 4I – 1(I) = 3I = 3 (–20) = –60 V

Step III By superposition theorem,

 V
1
 = V

1
′ + V

1
′′ = 20 – 60 = –40 V

 Example 3.19  Find the current in the 6 W  resistor in Fig. 3.82.

Vx

2Vx+−

18 V

1 Ω

6 Ω

+− I

3 A

Fig. 3.82

Solution

Step I When the 18 V source is acting alone (Fig. 3.83)

From Fig. 3.83,

V
x
 = –I′

Applying KVL to the mesh,

18 – I′ + 2V
x
 – 6I′ = 0

18 – I′ – 2I′ – 6I′ = 0

I′ = 2 A (↓)

Step II When the 3 A source is acting alone (Fig. 3.84)

From Fig. 3.84,

V I IxVV =1 1 1II= −  …(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I2 1I 3=I1II  …(ii)

Applying KVL to the outerpath of the supermesh,

−
− =

1 2 6 0=
2 6− 0

1 2− 6

1 2 2

I V2+1 2+
I + 21 + 2 I

x

( )1−
3 6 01 26I6 =2I66   …(iii)

4I

1 Ω 4 ΩI

+
−

V1

20 V

′′

Fig. 3.81

Vx

2Vx+ −

18 V

1 Ω

6 Ω

+− I ′

Fig. 3.83

Vx

2Vx+  −
1 Ω

6 Ω

+− I ′′

3 A

I1 I2

Fig. 3.84



3.2 Superposition Theorem 3.23

Solving Eqs (ii) and (iii),

I

I

1

2

2

1

= −
=

A

A

′′ = ↓I I′′ = 2 1 A ( )↓  

Step III By superposition theorem,

I
6 Ω 

= I′ + I′′ = 2 + 1 = 3 A (↓)

 Example 3.20  Find the current I
y
 in Fig. 3.85.

40 V120 V 12 A

4 Ω 8 ΩIy 10Iy
+  −

Fig. 3.85

Solution

Step I When the 120 V source is acting alone (Fig. 3.86)

Applying KVL to the mesh,

120 – 4I
y
′ – 10I

y
′ – 8I

y
′ = 0

I
y
′ = 5.45 A (→)

Step II When the 12 A source is acting alone (Fig. 3.87)

From Fig. 3.87,
I Iy″ 1  …(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I2 1I 12=I1II  ...(ii)

Applying KVL to the outer path of the supermesh,

− =

− =

4 10 8 0

4 10 8− 0

1 20 8−

1 10 2

101 1− 0 I

101 1− 0 I

y″

14 8 01 28I 81 888  …(iii)

Solving Eqs (ii) and (iii),

I

I

1

2

4 36

7 64

= −
=

A

A

Iy I″ = = −1 4. A36 ( )→  

Step III When the 40 V source is acting alone (Fig. 3.88)

Applying KVL to the mesh,

–4 I
y
′′′ – 10I

y
′′′ – 8I

y
′′′ – 40 = 0

I y ″′ = −
40

22
= –1.82 A (→)

120 V

4 Ω 8 ΩI y
′ 10I y

′

+  −

Fig. 3.86

8 Ω
+ −

4 Ω 12 A

10Iy′′Iy′′

I1 I2

Fig. 3.87

8 Ω
+  −

4 Ω 40 V

10Iy′′′Iy′′′

Fig. 3.88
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Step IV By superposition theorem,

I
y
 = I

y
′ + I

y
′′ + I

y
′′′ = 5.45 – 4.36 – 1.82 = –0.73 A (→)

 Example 3.21  Find the voltage V
x
 in Fig. 3.89.

36 V18 V

5 A

3 Ω 6 Ω

24 Ω

3Vx
+  −

Vx+ −Vx

Fig. 3.89

Solution

Step I When the 18 V source is acting alone (Fig. 3.90)

From Fig. 3.90,

V
x
′ = 3I

Applying KVL to the mesh,

18 – 3I – 6I – 3V
x
′ = 0

18 – 3I – 6I – 3 (3I) = 0

I = 1 A

V
x
′ = 3 V

Step II When the 5 A source is acting alone (Fig. 3.91)

From Fig. 3.91,

V
x
′′ = –3I

1 
…(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I2 1I 5=I1II  ...(ii)

Applying KVL to the outer path of the supermesh,

− −
− − =

3 6 3 0=
3 6 3 0

1 26

1 26

I66− V

I66−
xV″

( )3 1I1

12 6 01 26I 61 666  …(iii)

Solving Eqs (ii) and (iii),
I

I

1

2

1 67

3 33

= −
=

A

A

V IxVV″ 3 3I = 671 ( .−1 ) V5= −

Step III When the 36 V source is acting alone (Fig. 3.92)

From the fi gure,

V
x
′′′ = –3I

Applying KVL to the mesh,

36 + 3V
x
′′′ – 6I – 3I = 0

18 V

3 Ω 6 Ω 3Vx
′

+ −
Vx+ −Vx

I

Fig. 3.90

5 A

3Vx
′

3 Ω 6 Ω

24 Ω

I1
I2

+
−

Vx
+ −Vx

Fig. 3.91

36 V

3 Ω 6 Ω 3Vx
′′′

+  −
Vx

′′′+ −V ′′′

I

Fig. 3.92
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36 3 6
3

3
3

0

36 3 2

+ ′′′
− ′′′⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−
′′′⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

+ ′′′ ′′′ +

V
V ′′′⎞ V−⎛

V V2

xV
x x

3
⎞⎞⎞ ⎛⎛⎛V VV V

3
⎞⎞⎞ ⎛⎛⎛

x xV VV2 VV

V

xVV

xVV

″′ =
′′′ = −

0

6 V

Step IV By superposition theorem,

V
x
 = V

x
′ + V

x
′′ + V

x
′′′ = 3 – 5 – 6 = –8 V

 Example 3.22  Find the voltage V in the network of Fig. 3.93.

10 V 8 V−5 A

8 Ω 5 Ω15 Ω

12 Ω
+
−

V− +V

Fig. 3.93

Solution

Step I When the 10 V source is acting alone 

(Fig. 3.94)

From Fig. 3.94,

 V I′ 8 1  ...(i)

Applying KVL to Mesh 1,

 − −10 8 15 1− 2 0=1 115151− 5 ( )1 2−  

 35 12 101 2I I121 12 =2I1212 −  ...(ii)

Applying KVL to Mesh 2,

 
− − =

− −
12 5 8 0

12 12 5 8 0=
2

2 1 2 8

( )2 1

( )8 18

2 1− I V8−2

I I+122 1+12 88− ( 8−8

′
 

 76 17 01 217I I171 17 =2I1717  ...(iii)

Solving Eqs (ii) and (iii),

 

I

I

V I

1

2

1

0 54

2 4

8 8I1 54 32

=
= .

( .0 ) .4

A

A

V′
 

Step II When the –5 A source is acting alone 

(Fig. 3.95)

From Fig. 3.95,

 V I″ 8 1  ...(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

 I I1 2I I 5=I2I −  ...(ii)

10 V 8 V ′

8 Ω 5 Ω15 Ω

12 Ω
+
−

V ′− +V ′

I1 I2

Fig. 3.94

8 V ′′

8 Ω 5 Ω15 Ω

12 Ω
+
−

V ′′− +V ′′

I1 I3I2

−5 A

Fig. 3.95
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Applying KVL to the outer path of the supermesh,

−8 15 1− 2 0=1 25151− 5 ( )2 3−  

−8 27 1+ 2 0=1 227 3272− 7  ...(iii)

Applying KVL to Mesh 3,

− − =
− −

12 5 8 0

12 12 5 8 0=
3

3 2 3 8

( )3 2

( )8 18

3 − I V8−3

I I+123 +12 88− ( 8−8

″
 

64 12 17 01 2 3I I121 I− =172 3I1212 I3  ...(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

V I

1

2

3

1

4 97

9 97

25 74

8 8I1 97 76

=
=
=

97

.

( .4−4 ) .39

A

A

A

V″

Step III By superposition theorem,

V V V+V = −′ ″V+ 4 32 3− 9 76 4= − 4 08. .32 39 . V08

 Example 3.23  For the network shown in Fig. 3.96, fi nd the voltage V
0
.

25 V1 A

50 Ω 200 Ω

40 Ω

V0
V1

0.5V1

+

+

−

− +
−

Fig. 3.96 

Solution

Step I When the 1 A source is acting alone (Fig. 3.97)

From Fig. 3.97,

V I1 2V IV 200  ...(i)

For Mesh 1,

I1 1=  ...(ii)

Applying KVL to Mesh 2,

0 200 0

0 200 40 40 200 0

2 1 200

2 240 1 2200

. (5 401 ))

. (5 ))

I(401 40 I200200I1)

I40I2 ) I I2001 200

−240 =2I200200

+2I4040 =2I200200

40 140 01 2140I I1401 140 =2I140140  ...(iii)

Solving Eqs (ii) and (iii),

I

I

V I I

V

V

1

2

0 1V IV I 2

0VV

0VV

1

0 29

50 200 0

50 200 29 0

=
=

−1II =
− −50

A

A

V

( )11 ( .0 )

′
′

′ = 108

50 Ω 200 Ω

40 Ω

1 A V1

0.5V1

+

+

−

−

+
−

V0
′

I2I1

Fig. 3.97 



3.2 Superposition Theorem 3.27

Step II When the 25 V source is acting alone (Fig. 3.98)

From Fig. 3.98,

V I1VV 200 25 0−I =

V I1VV 200 25+I  ...(i)

Applying KVL to Mesh 1,

0 5 40 200 25 0

0 200 25 40 200 25 0

0 09

1

. (5 )

V I401 I

I40I 25) I

I

−I40 − =25

25) − −200 I =
= − A

V V I0 1V VV V 200 25 200 09″ = +I200 = 200( .0− ) V25 725

Step III By superposition theorem,

V V0 0V VV V 0VV= ′V0VV + ″V0VV = 108 + 7 = 115V

 Example 3.24  For the network shown in Fig. 3.99, fi nd the voltage V
x
.

10 A

4 Ω

6 Ω

2 Ω

+

−

VxVx
2

20 V

Fig. 3.99

Solution

Step I When the 20 V source is acting alone (Fig. 

3.100)

From Fig. 3.100,

VxVV ′ 6( )I I1 2I−  ...(i)

Applying KVL to Mesh 1,

20 2 6 01 6− 2 =66( )1 2− 2I1 I

8 6 201 26I66 =2I66  ...(ii)

For Mesh 2,

I
V

I
xVV

2 1 2I
2

6

2
3 3I1= = = 3I

′ ( )I I1 2I

3 4 01 24I44 =2I44  ...(iii)

Solving Eqs (ii) and (iii),

I

I

VxVV

1

2

5 71

4 29

6 6 71 4 8 52

=

=

716 =

.

( )1 2I I1 2II1 ( .5(55 . )29

A

A

V′
 

25 V

50 Ω 200 Ω

40 Ω

V1

0.5V1

+

−

+
−

V0
′′

I

Fig. 3.98

20 V Vx

Vx

2 Ω

6 Ω

+

−

4 Ω

I1 I2

2′
′

Fig. 3.100
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Step II When the 10 A source is acting alone (Fig. 3.101)

From Fig. 3.101,

VxVV″ = 6(I I1 2I I )  ...(i)

Applying KVL to Mesh 1,

− =2 6− 0( )1 3 ( )1 2− 1 −
8 6 2 01 26 3I66 −26  ...(ii)

For Mesh 2,

I
V

I
xVV

2 1 2I
2

6

2
3 3I1= = = 3I

″ ( )I I1 2I
 

3 4 01 24I44 =2I44  ...(iii)

For Mesh 3,

I3 10= −  ...(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

V I IxVV

1

2

3

1 2I

5 71

4 29

10

5 71 4 29 52

= −
= −
= −

− I2I +5 71

.

) (6= . .71 4+71 ) .8

A

A

A

V″ 6(

Step III By superposition theorem,

V V Vx xV VV xVV+VxVV ′ ″V+ = 8.52 − 8.52 = 0  

 Example 3.25  Calculate the current I in the network shown in Fig. 3.102.

2 Ω

2I1

I

20 Ω

4 Ω

10 Ω

50 V70 V

−   +

Fig. 3.102

Solution

Step I When the 70 V source is acting alone (Fig. 3.103)

From Fig. 3.103,

I I′ 3  ...(i)

Applying KVL to Mesh 1,

− − =4 2 20 01 1I21 12− ( )1 2I I1 −
26 20 01 220I I201 20 =2I2020  ...(ii)

Applying KVL to Mesh 2,

70 20 2 0− 20 − 2( )2 1 ( )2 32 12

− −20 22 2 7= 01 2 3I I+ 221 + 22  ...(iii)

10 A

4 Ω

6 Ω

2 Ω

+

−
I1

I3

I2

Vx

Vx

2

′′
′′

Fig. 3.101

2 Ω

2I1

I1

I ′

20 Ω

4 Ω

10 Ω

70 V

− +

I2

I1

I3

Fig. 3.103
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Applying KVL to Mesh 3,

− =2 2+ 10 01 310( )3 2− I I−101 3−10  

2 2 12 01 2 3I2 I3−2I22 =  ...(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

I I

1

2

3

3

8 94

11 62

3 43

3

=
=
=

=I3 ←

.

. (43 )

A

A

A

′

 

Step II When the 50 V source is acting alone (Fig. 3.104)

From Fig. 3.104,

′′I I′′ = 3  …(i)

Applying KVL to Mesh 1,

− − =4 2 20 01 1I21 12− ( )1 2I I1 −
26 20 01 20I I201 20 =2I2020  …(ii)

Applying KVL to Mesh 2,

− −20 2 0=( )2 1 ( )2 32 1− −
− −20 22 2 0=1 2 3I I+ 221 + 22  …(iii)

Applying KVL to Mesh 3,

− =2 2+ 50 10 01 350 0( )3 2− I I+ 50 101 3+ −50 10

2 2 12 501 2 3I2 I3−2I22 = −  …(iv)

Solving Eqs (ii), (iii), and (iv),

I

I

I

I I

1

2

3

3

1 06

1 38

4 57

4

=
=
=

′′ =I3 ←. (57 )

A

A

A
 

Step III By superposition theorem,

I I I′ + ′′ = =3 43 4+ 57 8. .43 4+ ( )←A  

 Example 3.26  Find the voltage V
0
 in the network of Fig. 3.105.

10 V 1 A

5 Ω 4 V

2 Ω

1 Ω

V0
V0

+
− 2

+

−

 

Fig. 3.105

2 Ω

2I1

I1

I ′′

20 Ω

4 Ω

10 Ω

50 V

−   +

I2

I1

I3

 

Fig. 3.104
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Solution

Step I When the 10 V source is acting alone 

(Fig. 3.106)

Applying KCL at the node,

 

′
+

′
+

′ −
′

=

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

′ =

′ =

V ′ V
V

V

V

V

0 0+
V VV V− 0VV

0VV

0VV

0VV

10

5 2

2

1
0

1

5

1

2

1

2
2

1 6. V67

 

Step II When the 1A current source is acting 

alone (Fig. 3.107)

Applying KCL at the node,

 
′′
+ +

′′
+

′′−
′′

V V′′ V
V

0 0+ +
V VV V 0VV

0VV

5 2

2

1

 

1

5

1

2

1

2
1

0 83

0

0

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

′′= −

′′= −

V0

V0 . V83

 

Step III When the 4 V source is acting alone

(Fig. 3.108)

Applying KCL at the node,

 

′′′
+

′′′
+

′′′− −
′′′

=

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

′′′ =

′′′ =

V V′′′ V
V

V

V

0 0+
V VV V 0VV

0VV

0VV

0VV

5 2

4
2

1
0

1

5

1

2

1

2
4

3 333 3. V33

 

Step IV By superposition theorem,

 V V V V0VV 0 0 0V V VV V V 1 67 0 83 3 33 4 17= ′ ′′ ′′′ = 1 67 + 3 33. .67 0 . .33 433 V  

 3.3    THEVENIN’S THEOREM

It states that ‘any two terminals of a network can be replaced by an equivalent voltage source and an 

equivalent series resistance. The voltage source is the voltage across the two terminals with load, if any, 

removed. The series resistance is the resistance of the network measured between two terminals with load 

removed and constant voltage source being replaced by its internal resistance (or if it is not given with 

zero resistance, i.e., short circuit) and constant current source replaced by infi nite resistance, i.e., open 

circuit.’

5 Ω

2 Ω

1 Ω

V0′+
− 2

+

−

V0′10 V

Fig. 3.106

1 A

5 Ω

2 Ω

1 Ω

V0″+
− 2

+

−

V0″

Fig. 3.107

5 Ω

2

1 Ω4 V

V0″′+
− 2

+

−

V0″′

Fig. 3.108
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IL IL

RL
VTh

RTh

RL
Network

(a) (b)

Fig. 3.109 Network illustrating Thevenin’s theorem

Explanation Consider a simple network as shown in Fig. 3.110.

R1

V R2 RL

R3

A

B

Fig. 3.110 Network

For fi nding load current through R
L
, fi rst remove the load 

resistor R
L
 from the network and calculate open circuit voltage 

V
Th 

across points A and B as shown in Fig. 3.111.

V
R

R R
ThVV V= 2R

2R
1

 

For fi nding series resistance RThRR ,  replace the voltage source 

by a short circuit and calculate resistance between points A and 

B as shown in Fig. 3.112.

R R
R R

R R
ThRR +R3RR

1 2R RR

1 2R RR

Thevenin’s equivalent network is shown in Fig. 3.113.

I
V

R R
L

LR
= ThVV

ThRR

If the network contains both independent and dependent 

sources, Thevenin’s resistance RThRR is calculated as,

R
V

IN
ThRR

ThVV
=

where IN  is the short-circuit current which would fl ow in a 

short circuit placed across the terminals A and B. Dependent 

sources are active at all times. They have zero values only when 

the control voltage or current is zero. RThRR  may be negative in 

R1

V R2 VTh

R3

A

B

+

−

Fig. 3.111 Calculation of V
Th

R1

R2 RTh

R3

A

B

Fig. 3.112 Calculation of R
Th

VTh

RTh

RL

IL

A

B

Fig 3.113 Thevenin’s equivalent 

network
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some cases which indicates negative resistance region of the device, i.e., as voltage increases, current 

decreases in the region and vice-versa.

If the network contains only dependent sources then

V

IN

ThVV =
=

0

0
 

For fi nding RThRR in such a network, a known voltage V is applied across the terminals A and B and current 

is calculated through the path AB. 

R
V

I
ThRR =

or a known current source I is connected across the 

terminals A and B and voltage is calculated across the 

terminals A and B.

R
V

I
ThRR =

Thevenin’s equivalent network for such a network is 

shown in Fig. 3.114.

Steps to be Followed in Thevenin’s Theorem

1. Remove the load resistance R
L
.

2. Find the open circuit voltage V
Th

 across points A and B.

3. Find the resistance R
Th

 as seen from points A and B.

4. Replace the network by a voltage source V
Th

 in series with resistance R
Th

.

5. Find the current through R
L
 using Ohm’s law.

I
V

R R
L

LR
= ThVV

ThRR

 Example 3.27  Find the current through the 2 W resistor in Fig. 3.115.

40 V

20 V

10 V

5 Ω 2 Ω

10 Ω

Fig. 3.115

Solution

Step I Calculation of V
Th

 (Fig. 3.116)

Applying KVL to the mesh,

40 5 20 10 0

15 20

1

− 5

=

=

20 1010

I

I . A33

 

RTh

A

B

Fig. 3.114 Thevenin’s equivalent network

40 V

20 V

10 V

5 Ω

10 Ω

I

A B

+
+

−

+ − −
VTh

Fig. 3.116



3.3 Thevenin’s Theorem 3.33

Writing the V
Th

 equation,

10 10 0

10 10 10 33 33

I V

V I10

+V =

+I10 33= 10

ThVVV

ThVV V( .(11 ) .10 23

Step II Calculation of R
Th

 (Fig. 3.117)

RThRR = 5 10 3= 33 . Ω

Step III Calculation of I
L
 (Fig. 3.118)

IL = =
23 33

3 33 2+
4

.
. A38

 Example 3.28  Find the current through the 8 W resistor in Fig. 3.119.

5 Ω

5 Ω 8 Ω

10 Ω

75 V

250 V

Fig. 3.119

Solution

Step I Calculation of V
Th

 (Fig. 3.120)

I = =
250

5 5+
25 A

Writing the V
Th

 equation,

250 5 75 0

1 175 5 50

− 5 75

= −175

V

V I175 5= −175

ThV

ThVV V( )25  

Step II Calculation of R
Th

 (Fig. 3.121)

RThRR = + =( ) .10 12 5 Ω

5 Ω

10 Ω

A B
RTh

Fig. 3.117

IL

A

B

3.33 Ω

23.33 V 2 Ω

Fig. 3.118

5 Ω

5 Ω

10 Ω

75 V

250 V

A

B

+
+

+ −

−
−

VTh

I

Fig. 3.120

5 Ω

5 Ω

10 Ω
A

B

RTh

Fig. 3.121
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Step III Calculation of I
L
 (Fig. 3.122)

IL = =
50

12 5 8+
2

.
. A44

 Example 3.29  Find the current through the 2 W resistor connected between terminals A and B in 

the Fig. 3.123.

2 4V V

2 Ω 3 Ω1 Ω

2 Ω12 Ω

A

B

Fig. 3.123

Solution

Step I Calculation of V
Th

 (Fig. 3.124)

Applying KVL to Mesh 1,

2 2 12 0

14 12 2

1

1 2

2 =
=2

I 121 121

I I121 121212

( )1 2− 2I1 I

...(i)

Applying KVL to Mesh 2,

− − −
− = −

12 1 3 4 0=
12 16 4

2 23

1 216

( )2 12 1− I33−
I I+161 +16 ...(ii)

Solving Eqs (i) and (ii),

I2 0= − . A4

Writing the V
Th 

equation,

V I

V I

ThVV

ThVV V

=
=

3 4I −I 0

4 3 4 3+ 4 8

2

2 ( .−0 ) .= 2

Step II Calculation of R
Th 

(Fig. 3.125)

RThRR = = Ω[( ) ] .2 12) 3 1= 3  ) ]12) +

Step III Calculation of I
L
 (Fig. 3.126)

IL = =
2 8

1 43 2+
0

.
. A82

IL

A

B

12.5 Ω

50 V 8 Ω

Fig. 3.122

2 4V V

2 Ω 3 Ω1 Ω

12 Ω

A

B

+
+

−

−

+

− + +
+

−

−−

V

I1
I2

Fig. 3.124

2 Ω 3 Ω1 Ω

12 Ω

A

B

RTh

Fig. 3.125

IL

A

B

1.43 Ω

2.8 V 2 Ω

Fig. 3.126



3.3 Thevenin’s Theorem 3.35

 Example 3.30  Find the current through the 10 W resistor in Fig. 3.127.

6 Ω

1 Ω 3 Ω 10 Ω

2 Ω

20 V

10 V

Fig. 3.127

Solution

Step I Calculation of V
Th

 (Fig. 3.128)

Applying KVL to Mesh 1,

10 6 1 0

7 10

1 1

1 2

− 6 =11( )1 22−I1 I
  …..(i)

Applying KVL to Mesh 2,

−
−

1 2− 3 0=
6 0=

2 23

1 26

( )2 1− I 32 − 3

I + 61 + 6
  …(ii)

Solving Eqs (i) and (ii),

I2 0= . A24   …(ii)

Writing the V
Th

 equation,

3 20 0

3 20 3 24 28

2

2

V2

V I33 243

ThV

ThVV V

=19.28 V (terminal

( .0(00 ) .20 19

B ABB is positive w.r.t )

Step II Calculation of R
Th

 (Fig. 3.129)

RThRR = = Ω[( ) ] .6 1 3] 7  ) ]+1 ]

Step III Calculation of I
L
 (Fig. 3.130)

IL = = ↑
19 28

1 47 1+ 0

.

.
.68 ( )↑

  Example 3.31   Find the current through the 10 W resistor in Fig. 3.131.

10 Ω

5 Ω 20 Ω

30 Ω

100 V10 A

Fig. 3.131

6 Ω

1 Ω

2 Ω

20 V

10 V

A

B

+
+ −

+

+ − + −

−

3 Ω

+

−
−

VTh

I1 I2

Fig. 3.128

6 Ω

1 Ω

2 Ω
A

B

3 Ω RTh

Fig. 3.129

IL

A

B

1.47 Ω

19.28 V 10 Ω

Fig. 3.130
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Solution

Step I Calculation of V
Th

 (Fig. 3.132)

For Mesh 1,

 1 10=  

Applying KVL to Mesh 2,

 
100 30 20 0

2

2 220

2

− 30 =

=

I I202 202

I A
 

Writing the V
Th

 equation,

 

5 20 0

5 20 5 20 10

1 220

1 220

1

V I5 15 −5ThVV V( )10( )1010 ( )2  

Step II Calculation of R
Th

 (Fig. 3.133)

 RThRR = = Ω5 + 1= 7( )20 30  

Step III Calculation of I
L
 (Fig. 3.134)

 IL =
+

=
10

17 10
0. A37  

 Example 3.32  Find the current through the 40 W resistor in Fig. 3.135.

50 Ω

20 Ω 40 Ω 30 Ω

10 Ω

25 V 10 V

Fig. 3.135

Solution

Step I Calculation of V
Th

 (Fig. 

3.136)

Since the 20 Ω resistor is connected 

across the 25 V source, the resistor 

becomes redundant.

 20VV VΩ = 25  

+

−

+
+ −

−

5 Ω 20 Ω

30 Ω

100 V10 A

A BTh

I1 I2

Fig. 3.132

5 Ω 20 Ω

30 ΩA B

RTh

Fig. 3.133

IL

A

B

17 Ω

10 V 10 Ω

Fig. 3.134

50 Ω

20 Ω 30 Ω

10 Ω

25 V 10 VVTh

I

A

B

+

+ − + −

−

Fig. 3.136
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Applying KVL to the mesh,

25 50 10 10 0

0

− 50 + =10

=
I I10−

I . A58
 

Writing the V
Th

 equation,

V

V

B

ThVV

ThVV ( )I ( . ) . V

. V(terminal i

− + =
−)I (=

=

10 10 0

10 10 10 5.58)) 2

4 2.

I

ss positive w.r . t )

 

Step II Calculation of R
Th

 (Fig. 3.137)

50 Ω

(a) (b)

20 Ω 30 Ω

10 Ω

RTh

A

B

RTh

A

B

10 Ω50 Ω

Fig. 3.137

RThRR = = Ω50 10 8 33 

Step III Calculation of I
L
 (Fig. 3.138)

 IL = = ↑
4 2

8 33 4+ 0
0

.
. (09 )  

  Example 3.33  Find the current through the 10 W  resistor in Fig. 3.139.

50 V

2 V

20 V

6 Ω 5 Ω10 Ω

15 Ω4 Ω

Fig. 3.139

Solution

Step I Calculation of V
Th

 (Fig. 

3.140)

I

I

1

2

50

6 4
5

20

5 15
1

= =

= =

A

A

IL

A

B

8.33 Ω

4.2 V 40 Ω

Fig. 3.138

+
+−

−

+
++ − −

−

4 Ω 15 Ω

5 Ω6 Ω

20 V50 V

2 V
A B

VTh

I1 I2

Fig. 3.140
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Writing the V
Th 

equation,

4 2 15 0

4 2 15 4 2 15 7

1 215

1 22 15

I V21 I

V I4 1 I

22 − =15 215I

I4 − =15 215I + −2 =
hV

ThVV V( )5 ( )1

Step II Calculation of R
Th

 (Fig. 3.141)

RThRR = = Ω( ) ( ) .6=) 15+) (
4 Ω 15 Ω

5 Ω6 Ω A B
RTh

Fig. 3.141

Step III Calculation of I
L
 (Fig. 3.142)

IL = =
7

6 15 1+ 0
0. A43

IL

A

B

6.15 Ω

7 V 10 Ω

Fig. 3.142

 Example 3.34  Determine the current through the 24 W  resistor in Fig. 3.143.

30 Ω
20 Ω

24 Ω

5 Ω50 Ω

220 V

Fig. 3.143

Solution

Step I Calculation of V
Th

 (Fig. 3.144)

I

I

1

220

30 50
2 75

220

20 5
8 8

=
+

=

=
+

=

A

A2

Writing the V
Th 

equation,

V I I

V I I
ThVV

ThVV V

I =
−I =

30 20 0

20 30 20 8 2 9= 3 5
1 2I− 20

2 1II− 30 ( .8 ) (− 30 . )75

30 Ω 20 Ω

5 Ω50 Ω

220 V
+

+ +

− −

−

A B
VTh

I1 I2

Fig. 3.144
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Step II Calculation of R
Th

 (Fig. 3.145)

30 Ω 20 Ω

5 Ω50 Ω

A B
RTh

Fig. 3.145

Redrawing the circuit (Fig. 3.146),

RThRR = = Ω( ) ( ) 2=) 7. 5+) (

30 Ω
20 Ω

5 Ω50 Ω

A B

Fig. 3.146

Step III Calculation of I
L
 (Fig. 3.147)

IL =
+

=
93 5

22 75 24
2

.

.
A

IL

A

B

22.75 Ω

93.5 V 24 Ω

Fig. 3.147

 Example 3.35  Find the current through the 3 W  resistor in Fig. 3.148.

4 Ω
5 Ω

3 Ω

8 Ω1 Ω

2 Ω

50 V

Fig. 3.148
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Solution

Step I Calculation of V
Th

 (Fig. 3.149)

Applying KVL to Mesh 1,

50 2 1 8 0

11 9 50
1 8

1 29

− 2 11 1 88

I 91 999

( )1 2−I1 I22 ( )1 2
  …(i)

Applying KVL to Mesh 2,

− − =
−

4 5 8 1− 0

9 18 0=
2 25

1 218

I55−
1+ 81+ 8

( )2 1− ( )2 1I I2 1−
  ...(ii)

Solving Eqs (i) and (ii),

I

I
1

2

7 69

3 85

=
=

A

A
 

Writing the V
Th 

equation,

V I

V I
ThVV

ThVV

( )I I

( )I I ( . ) ( . )

=)I

=)I −.

5 8II 0

5 8I +I 5( 85 3(3(( 85 7 6. 9 1) = −
2 (I8−

2 (I8+ 1 411

11 47

. V47

. V47 (the terminal is positive w . r . t . ).= B is positive w.r . t ..

Step II Calculation of R
Th

 (Fig. 3.150)

4 Ω
5 Ω

8 Ω1 Ω

2 Ω

A

B

RTh

Fig. 3.150

Redrawing the network (Fig. 3.151),

4 Ω
5 Ω

2 Ω

8 Ω1 Ω

A

B

Fig. 3.151

4 Ω
5 Ω

8 Ω1 Ω

2 Ω

+

+

+

+

−

+

+

+ −
−

−

−

−

+

−

−

A

B

VTh
I2

I1

50 V

Fig. 3.149



3.3 Thevenin’s Theorem 3.41

Converting the upper delta into equivalent star network (Fig. 3.152),

R

R

R

1RR

2R

3RR

4 2

4 2 5
0 73

4 5

4 2 5
1 82

5 2

4 2 5
0 91

=
+ +2

=

=
+ +2

=

=
+ +2

=

Ω

Ω

Ω

8 Ω1 Ω

R3
R1

R2

B

A

8 Ω

0.91 Ω0.73 Ω

1.82 Ω

1 Ω

B

A

Fig. 3.152 Fig. 3.153

Simplifying the network (Fig. 3.153),

RThRR = Ω1 1 73 8 91 27. (82 + .8.73 ) .= 3= 

8.91 Ω1.73 Ω

1.82 Ω

B

A

Fig. 3.154

Step III Calculation of I
L
 (Fig. 3.155)

IL = = ↑
11 47

3 27 3+
.

.83 ( )↑

IL

A

B

3.27 Ω

11.47 V 3 Ω

Fig. 3.155
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 Example 3.36  Find the current through the 20 W  resistor in Fig. 3.156.

45 V

20 V

120 V

20 Ω 15 Ω

5 Ω10 Ω

5 Ω

Fig. 3.156

Solution

Step I Calculation of V
Th

 (Fig. 3.157)

Applying KVL to Mesh 1,

45 120 15 10 0

30 15 75

1 5 0

1 215

− −120

=2 −
I 51 55 101010

I I151 151515

( )1 2 ( )1 2
 ...(i)

Applying KVL to Mesh 2,

20 5 10 5 0

15 20 20

2 10 5

1 220

− 5 =
−15 =

1010 55

I I201 20+1

( )2 1 ( )2 1− 1I I11
 ...(ii)

Solving Eqs (i) and (ii),

I

I

1

2

3 2

1 4

= −
= − .

A

A

Writing the V
Th 

equation,

45 10 0

45 10 45 10 2 4 63

− =

= −2−10 =4

V 10−

V 45 10= −45

ThVV

ThVV V

( )1 2− 2I1 I

( )1 22I1 I [ .3[ 3−3 ( .1−1 )]
 

Step II Calculation of R
Th

 (Fig. 3.158)

15 Ω

5 Ω10 Ω

5 Ω

A

B

RTh

Fig. 3.158

45 V

20 V

120 V

15 Ω

5 Ω10 Ω

5 Ω

+

−

+

+−

− + − +

+

−

− + −

A

B

VThI1

I2

Fig. 3.157



3.3 Thevenin’s Theorem 3.43

Converting the delta formed by resistors of 

10 Ω, 5 Ω and 5 Ω into an equivalent star 

network (Fig. 3.159),

R

R

R

1RR

2R

3RR

10 5

20
2 5

10 5

20
2 5

5 5

20
1 25

=
×

=

=
×

=

= = .

Ω

Ω

Ω

 

Simplifying the network (Fig. 3.160),

RThRR = + =( . | | . )25 2. 2 5. 4 6. 7 Ω

16.25 Ω

2.5 Ω

2.5 Ω

A

B

RTh

Fig. 3.161

Step III Calculation of I
L

IL = =
63

4 67 2+ 0
2. A55

IL

A

B

4.67 Ω

63 V 20 Ω

Fig. 3.162

 Example 3.37  Find the current through the 3 W  resistor in Fig. 3.163.

6 A

42 V

3 Ω6 Ω

12 Ω

Fig. 3.163

Solution

Step I Calculation of V
Th

 (Fig. 3.164)

For Mesh 1,

I1 6=  …(i)

Applying KVL to Mesh 2,

42 12 6 0

12 18 42

2

1 218

−12 − 6

−12 =

( )2 12 12

I I181 18+1

 ...(ii)

6 A

42 V

6 Ω

12 Ω

+−

+

+

−

+

−

−

I1 I2

A

VTh

B

Fig. 3.164

15 Ω

R3
R2

R1

B

A

15 Ω2.5 Ω

2.5 Ω 1.25 Ω

RTh

B

A

Fig. 3.159 Fig. 3.160
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Solving Eqs (i) and (ii),

I2 6= . A33

Writing the V
Th 

equation,

V IThVV V6 3II =I 82

Step II Calculation of R
Th

 (Fig. 3.165)

RThRR = 6 12 4= Ω

Step III Calculation of I
L
 (Fig. 3.166)

IL = =
38

4 3+
5. A43

 Example 3.38  Find the current through the 30 W  resistor in Fig. 3.167.

150 V 13 A 50 V

15 Ω 30 Ω60 Ω

40 Ω

Fig. 3.167

Solution

Step I Calculation of V
Th

 (Fig. 3.168)

Meshes 1 and 2 form a supermesh.

Writing current equation for supermesh,

I I2 1I 13=I1II  ...(i)

Writing voltage equation for supermesh,

150 15 60 40 0

15 100 150

1 260 2

1 2100

−15 − =40 2

=2

I I601 601 I

I I1001 +100100  ...(ii)

Solving Eqs (i) and (ii),

I

I

1 10

3

= −
=

A

A2

Writing the V
Th 

equation,

40 50 0

40 50 40 50 70

2

2

I V2

V I40

−V =
−2I40 = 40

ThVVVV

ThVV V( )3( )33

Step II Calculation of R
Th

 (Fig. 3.169)

RThRR = = Ω75 40 26 09 .

6 Ω12 Ω

A

B

RTh

Fig. 3.165

IL

A

B

4 Ω

38 V 3 Ω

Fig. 3.166

150 V 13 A 50 V

15 Ω 60 Ω

40 Ω

+
+ −++ − −

−I1 I2

A B
VTh

Fig. 3.168

15 Ω 60 Ω

40 Ω

A B
RTh

Fig. 3.169
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Step III Calculation of I
L
 (Fig. 3.170)

IL =
+

=
70

26 09 30
1

.
. A25

 Example 3.39  Find the current through the 20 W  resistor in Fig. 3.171.

10 Ω

5 Ω 20 Ω 100 V5 A

Fig. 3.171

Solution

Step I Calculation of V
Th

 (Fig. 3.172)

VThVV V= 100 10 Ω

5 Ω 100 V5 A

+

−

A

B

VTh

Fig. 3.172

Step II Calculation of RThRR  (Fig.3.173)

5 Ω

(a) (b)

A

B

RTh

10 Ω

5 Ω
A

B

RTh

Fig. 3.173

RThRR = 0  

Step III Calculation of IL  (Fig. 3.174)

IL = =
100

20
5A

IL

A

B

100 V 20 Ω

Fig. 3.174

IL

A

B

26.09 Ω

70 V 30 Ω

Fig. 3.170
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 Example 3.40  Find the current through the 20 W  resistor in Fig. 3.175.

10 V 2 A

10 Ω 5 Ω20 Ω

8 Ω4 Ω

Fig. 3.175

Solution

Step I Calculation of VThVV  (Fig. 3.176)

I

I

1

2

10

10 4
0

2

=
+

=

=

. A71

A

 

Writing the VThVV  equation,

4 8 0

4 71 2 84

1 281 I

V

=
71= 4ThVV V( .0(00 ) (8+ ) .18=

Step II Calculation of RThRR  (Fig. 3.177).

4 Ω 8 Ω

5 Ω10 Ω
A B

RTh

(a)

2.86 Ω 8 Ω

A B

RTh

(b)

Fig. 3.177

RThRR = 10 86. Ω

Step III Calculation of IL  (Fig. 3.178)

IL =
+

=
18 84

10 86 20
0

.

.
. A61 IL

A

B

10.86 Ω

18.84 V 20 Ω

Fig. 3.178

2 A

+
+ −

−

+
++ − −

−

4 Ω 8 Ω

5 Ω10 Ω

10 V

A B
VTh

I1 I2

Fig. 3.176



3.3 Thevenin’s Theorem 3.47

 Example 3.41  Find the current through the 5 W  resistor in Fig. 3.179.

10 Ω

5 Ω 2 Ω 3 Ω

2 Ω

100 V

50 V50 V

Fig. 3.179

Solution

Step I Calculation of VThVV  (Fig. 3.180)

Applying KVL to Mesh 1,

100 10 0 2 2 0

14 2 150

1 150

2 2

−10 =
=2

I 50 21 150 2+1 2

I I22 222

( )1 22I I1
 ...(i)

Applying KVL to Mesh 2,

− =
− =

2 5+ 0 3− 0

2 5 50

2

1 25

( )2 1− I

I5+ 5+
  …(ii)

Solving Eqs (i) and (ii),

I

I

1

2

12 88

15 15

=
=

.

.

A

A

Writing the VThVV  equation,

100 10 0

100 10 88 8

28

1−10 =

= −100

=

I V1 −1

V

B

ThVV

ThVV V

terminal is po

( .12 ) .28= −

. (8 V sitivss e w.r.t. A)

Step II Calculation of RThRR  (Fig. 3.181) 

10 Ω

2 Ω

(a) (b)

3 Ω

2 Ω

A

B

RTh

10 Ω

1.2 Ω

2 Ω

A

B

RTh

RThRR = =10 3 2 2 42 . .2 2 Ω

10 Ω

2 Ω 3 Ω

2 Ω

100 V

50 V50 V

+ +

+ − +
+

−

−

− +

−

−

A

B

VTh

I2
I1

Fig. 3.180

(c)

10 Ω 3.2 Ω

A

B

RTh

Fig. 3.181
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Step III Calculation of IL  (Fig. 3.182)

IL = = ↑
28 8

2 42 5+
3

.

.
. (88 ) IL

A

B

2.42 Ω

28.8 V 5 Ω

Fig. 3.182

 Example 3.42  Find the current through the 10 W  resister in Fig. 3.183.

15 V

10 V

1 Ω

2 Ω

10 Ω

1 Ω

2 Ω

1 Ω

Fig. 3.183

Solution

Step I Calculation of V
Th 

 (Fig. 3.183)

Applying KVL to Mesh 1,

− −15 2 1 10 1 0=
4 2= − 5

1 10 1

1 2

11 1− 10 1− −10 1

−
( )−1 2I1 I2

 ...(i)

Applying KVL to Mesh 2,

10 1 2 1 0

4 10

2 21

1 2

−1 2

−
( )2 1 I 12 12

I 41 4+1

 ...(ii)

Solving Eqs (i) and (ii),

I

I

1

2

6

1

= −
=

A

A
 

Writing the V
Th

 equation,

− =

= + = −

=

V I+ I

V I= I

ThV

ThVV V

V

2 2+I 0

2 2+I 2 2 10

10

2 12+

1 2I2+ ( )6− ( )1

( iBthe terminal sii positive w.r.t. A)  

15 V

10 V

1 Ω

2 Ω

1 Ω

2 Ω

1 Ω

+
++ −

−

−

+−

+

+

−

−

+ −

A B
VTh

I2I1

Fig. 3.184
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Step II Calculation of R
Th

 (Fig. 3.185) 

1 Ω

2 Ω

1 Ω

2 Ω

1 Ω

A B
RTh

Fig. 3.185

Converting the star network formed by resistors of 2 1Ω Ω2 Ω, and into an equivalent delta network

(Fig. 3.186),

R

R

R

1RR

2R

3RR

2 2
2 2

1
8

2 1
2 1

2
4

2 1
2 1

2
4

= +2 + =

= +2 + =

= +2 + =

Ω

Ω

Ω

1 Ω

2 Ω

1 Ω

2 Ω

1 Ω

A B
RTh

Fig. 3.186

Simplifying the network (Fig. 3.187),

8 Ω

8 Ω

4 Ω

1 Ω
(a)

(b)

(c)

1 Ω

0.8 Ω 0.8 Ω4 Ω

A B
RTh A B

RTh

1.33 Ω

A B

RTh

Fig. 3.187

RThRR = 1 33 Ω  
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Step III Calculation of IL  (Fig. 3.188)

IL = = ↑
10

1 33 1+ 0
0. (88 )

IL

A

B

1.33 Ω

10 V 10 Ω

Fig. 3.188

 Example 3.43  Find the current through the 1 W  resistor in Fig. 3.189.

4 V
3 A

1 A

3 Ω

1 Ω

2 Ω

Fig. 3.189

Solution

Step I Calculation of V
Th

 (Fig. 3.190)

4 V
3 A

1 A

3 Ω2 Ω I2

+
+

−2− ++
+ −−

−

A

B

VTh
I1

Fig. 3.190

Writing the current equations for Meshes 1 and 2,

I

I

1

2

3

1

= −
=

Writing the V
Th

 equation,

4 2 0

4 2 4 2 12

2 − =
= 2

( )1 2

( )1 2− 2 ( )4−
11 V

V 4 2= 4 ( 1

ThV

ThVV V

Step II Calculation of R
Th

 (Fig. 3.191) 

RThRR = 2 Ω

Step III Calculation of IL  (Fig. 3.192)

IL = =
12

2 1+
4 A

3 Ω2 Ω

A

B

RTh

Fig. 3.191

IL

A

B

2 Ω

12 V 1 Ω

Fig. 3.192
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 Example 3.44  Find the current through the 3 W  resistor in Fig. 3.193.

2 Ω

2 Ω 3 Ω

1 Ω

10 V 10 A

Fig. 3.193

Solution

Step I Calculation of V
Th

 (Fig. 3.194)

2 Ω

2 Ω

1 Ω

10 V 10 A

+

−

A

B

VTh

Fig. 3.194

By source transformation (Fig. 3.195),

2 Ω 1 Ω

10 V

20 V

+

−

A

B

VTh

2 Ω

++ −

−
I

Fig. 3.195

Applying KVL to the mesh,

10 2 2 20 0

4 10

2

− 2 2

= −

2222

I . A5

Writing the V
Th 

equation,

10 2 0

10 2 10 2 5 15

− 2

10 =5

V

V I10 2= −10

ThV

ThVV V( .2−2 )

Step II Calculation of R
Th

 (Fig. 3.196) 

RThRR = + +( ) 1 1= 1 2= Ω

Step III Calculation of I
L 

 (Fig. 3.197)

IL = =
15

2 3+
3A  

2 Ω 1 Ω
A

B

RTh
2 Ω

Fig. 3.196

IL

A

B

2 Ω

15 V 3 Ω

Fig. 3.197
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EXAMPLES WITH DEPENDENT SOURCES

 Example 3.45  Obtain the Thevenin equivalent network for the given network of Fig. 3.198 at

terminals A and B.

2I1
4 Ω

8 V

I1
A

B

Fig. 3.198

Solution

Step I Calculation of V
Th

 (Fig. 3.199)

From Fig. 3.199,

I I

I

1 1I II I

1

1

2

3 0I1

0=

Writing the V
Th

 equation,

8 0 0

8

−0 =
=

V

V

ThVV

ThVV V

Step II Calculation of I
N
 (Fig. 3.200),

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I I2 1I 12=I1II

3 01 2  ...(i)

Applying KVL to the outer path of the supermesh,

8 4 01 =14I1I1

I1 2=  ...(ii)

Solving Eqs (i) and (ii),

I

I IN

2

2

6

6

=
=I2

A

A

Step III Calculation of R
Th

R
V

IN
ThRR

ThVV
= = =

8

6
1 33 Ω

Step IV Thevenin’s Equivalent Network (Fig. 3.201)

2I1
4 Ω

8 V

I1
A

B

+

−

VTh

 

Fig. 3.199

IN2I1
4 Ω

8 V

I1

I1 I2

A

B  

Fig. 3.200

8 V

A

B

1.33 Ω

Fig. 3.201
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 Example 3.46  Find Thevenin’s equivalent network of Fig. 3.202.

4 V

A

B

2 Ω 3 Ω

0.1 Vx Vx

+

−

Fig. 3.202

Solution

Step I Calculation of V
Th

 (Fig. 3.203)

V V

I V

xVV

xVV

ThVV

1 0 1

Writing the V
Th 

equation,

4 2 0

4 2 1 0

4 0 8 0

5

5

12 =

2 =

0 8

=

=

I V1 −1

V V−

V

V

V V=

xVV

x xV VV V

xV

xVV

xVV

( .0− )

.

V

VThV

Step II Calculation of I
N
 (Fig. 3.204)

From Fig. 3.204,

VxVV = 0

The dependent source 0.1 V
x 

depends on the controlling 

variable V
x
. When V

x 
= 0, the dependent source vanishes, i.e., 

0.1V
x 
= 0 as shown in Fig. 3.205.

IN = =
4

2 3+
0. A8

Step III Calculation of R
Th

 

R
V

IN
ThRR

ThVV
= = =

5

0 8
6 25 Ω

Step IV Thevenin’s Equivalent Network (Fig. 3.206)

4 V

A

B

2 Ω 3 Ω

0.1 Vx Vx = VTh

+

−

I1

+ −

Fig. 3.203

4 V

A

B

2 Ω 3 Ω

0.1 Vx Vx

+

−

IN

Fig. 3.204

4 V

A

B

2 Ω 3 Ω

IN

Fig. 3.205

5 V

A

B

6.25 Ω

Fig. 3.206
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 Example 3.47  Obtain the Thevenin equivalent network of Fig. 3.207 for the terminals A and B.

2 A

2 Ω

2 V

Vx

A

B

1 Ω 4Vx

−  +

Fig. 3.207

Solution

Step I Calculation of V
Th 

(Fig. 3.208)

From Fig. 3.208,

2 2 0

2 2
1

1

2 =I V1 −1

V I2 2 1= 2
xVV

xVV

For Mesh 1,

I

VxVV
1 2

2 2 6

= −
= 2

A

V( )2−2

Writing the V
Th 

equation,

2 2 0 4 0

2 2 0 4 0

30

12 − =
2 +0 − =

=

I V0 41 −1 4 V

V

V

xV ThVV

ThV

ThVV V

( )2− ( )6

Step II Calculation of I
N
 (Fig. 3.209)

From Fig. 3.209,

V IxVV 2 2 1  …(i)

Meshes 1 and 2 will form a supermesh,

Writing current equation for the supermesh

I I2 1I 2=I1II  …(ii)

Applying KVL to the outer path of the supermesh,

2 2 1 4 0

2 2 4 0

10 10

1 2

1 2

1 2

2 + =4

2 + 4

=2

I 11 11 V

I I11

I I1 +

xV

( )2 2 1−2  ...(iii)

Solving Eqs (ii) and (iii),

I

I

I IN

1

2

2

0 73

2 73

2 73

=
=

=I2

A

A

A

Step III Calculation of R
Th

R
V

IN
ThRR

ThVV
= = =

30

2 73
10 98. Ω

Step IV Thevenin’s Equivalent Network (Fig. 3.210)

2 A

2 Ω

2 V

Vx

A

B

1 Ω 4Vx

+−

I1
+

−

VTh

+

−

Fig. 3.208

2 V

A

B

1 Ω

2 Ω
2 A

I1 I2

Vx 4Vx
+−

IN

Fig. 3.209

30 V

A

B

10.98 Ω

Fig. 3.210
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 Example 3.48  Find the Thevenin equivalent network of Fig. 3.211 for the terminals A and B.

10 Ω

5 V

A

B

1 Ω8I1

+−

10 Ω

I1

Fig. 3.211

Solution

Step I Calculation of V
Th 

(Fig. 3.212)

Applying KVL to the mesh,

5 10 10 0

5

20
0

1 110

1

10

= =

1010

I1 . A25

Writing the V
Th

 equation,

5 10 8 0 0

2 5 2 25 5

1 188

1

10 −0 =
= 5

8888 V

V I5 2 1= 5

ThVV

ThVV V( .0 ) .4

Step II Calculation of I
N
 (Fig. 3.213)

Applying KVL to Mesh 1,

5 10 10 0

20 10 5

1 0

1 210

10

=2

1010

I I101 101010

( )1 2
 ...(i)

Applying KVL to Mesh 2,

− + =
=

10 8 1 0

18 11 0

1 21

1 2

( )2 12 1− I1−1−
I I111 −11

 ...(ii)

Solving Eqs (i) and (ii),

I

I

I IN

1

2

2

1 375

2 25

2 25

=
=

=I2

.

.

.

A

A

A

Step III Calculation of R
Th

R
V

IN
ThRR

ThVV
= = = Ω

4 5

2 25.

Step IV Thevenin’s Equivalent Network (Fig. 3.214)

10 Ω

5 V

A

B

1 Ω8I1

+−

10 Ω VTh

I1
+

−

Fig. 3.212

10 Ω

5 V

A

B

1 Ω8I1

+−

10 Ω

IN

I1 I2

Fig. 3.213

4.5 V

A

B

2 Ω

Fig. 3.214
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 Example 3.49  Find V
Th

 and R
Th

 between terminals A and B of the network shown in Fig. 3.215 .

12 V

A

B

1 Ω 2 Ω

2Ix 1 Ω

Ix

Fig. 3.215

Solution

Step I Calculation of V
Th

 (Fig. 3.216)

I x = 0

The dependent source 2I
x 
depends on the controlling variable

 

I
x
.
 
When

 
I

x 
= 0, the dependent source vanishes, i.e., 2 0x  as 

shown in Fig. 3.216.

Writing the V
Th

 equation,

VThVV V= =12
1

1 1+
6×

Step II Calculation of I
N
 (Fig. 3.217)

From Fig. 3.217,

I
V

x = 1VV

2

Applying KCL at Node 1,

V V V
I

V V
V V

V

I
V

x

N

1 1V VV V 1VV

1 1V VV V
1 1V VV V

1VV

1VV

12

1 1 2
2

2
12 2

2

8

2

8

2
4

+ +1 =

+V1VV − =12
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

= = =

V

A

Step III Calculation of R
Th

R
V

IN
ThRR

ThVV
= = = Ω

6

4
5

 Example 3.50  Obtain the Thevenin equivalent network of Fig. 3.218 for the given network at

terminals a and b .

12 V

A

B

1 Ω 2 Ω

1 Ω
VTh

+

−

Fig. 3.216

12 V

A

B

1 Ω 2 Ω

2Ix 1 Ω

IxV1

IN

Fig. 3.217
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2 A

a

b

3 Ω 4 Ω

2 Ω

5VxVx

+ −

 

Fig. 3.218 

Solution

Step I Calculation of V
Th

 (Fig. 3.219)

Applying KCL at Node x,

2
2

4

=

=

V

V

xVV

xVV V

Writing the V
Th

 equation,

V V V V

a b

x xVV VV xVVThVV 4

V the terminal a s ega ve w

−V

= − ( )
5

16 . . .

Step II Calculation of I
N
 (Fig. 3.220)

Applying KCL at Node x,

2
2

5

4

2
2 2

= +
−

= − = −

V V V

V
V

V

x x+
V VV V xVV

xVV
xVV

xVV

V

I
V V

V

xVV

N
x xV VV V

xVV

= −

= = − =

4

4
4

V

A

Step III Calculation of R
Th

R
V

IN
ThRR

ThVV
= =

−
= − Ω

16

4
4

Step IV Thevenin’s Equivalent Network (Fig. 3.221)

 Example 3.51  Obtain the Thevenin equivalent network of Fig. 3.222 for the given network.

5 A

150 V
30 Ω 10 Ω

+
−

+

−

15 ΩVx Vx
1

3

 

Fig. 3.222

2 A

a

b

3 Ω 4 Ω

2 Ω

5VxVx

+ −

VTh

+

−
 

Fig. 3.219

2 A

a

b

3 Ω 4 Ω

2 Ω

5VxVx

+ −

IN

 

Fig. 3.220

−16 V

a

b

−4 Ω

 

Fig. 3.221
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Solution

Step I Calculation of V
Th

 (Fig. 3.223)

From Fig. 3.223

xVV ThVV

Applying KCL at the node,

V V
V

V

V

x xV VV V
xVV

xVV

+ +x

=

=

1 0
1

3

10 15
5 0=

75

75

V

VThVV

Step II Calculation of I
N
 (Fig. 3.224)

Applying KCL at Node x,

V V
V V

V V V V

x xV VV V x xV VV V

x xV VV V x xV VV V

30
5

15

1 0
1

3

10
0

30 15 10 30
15 5

++ 5 + =

+ +x − = −

 

V

I
V

xVV

N
xVV

=

= = ==

60

30

60

30
2

V

A
 

Step III Calculation of R
Th

R
V

IN
ThRR

ThVV
= = = Ω

75

2
37 5.  

Step IV Thevenin’s Equivalent Network (Fig. 3.225)

 Example 3.52  Find the Thevenin’s equivalent network of the network to the left of A-B in the

Fig. 3.226.

+ −

1 A

10 V

5 Ω 10 Ω

A

B

10 Ix

Ix

 

Fig. 3.226

Solution

Step I Calculation of V
Th

 (Fig. 3.227)

From Fig. 3.227,

I I Ix I1 2I−  …(i)

For Mesh 1,

I1 1=  …(ii)

5 A

150 V
30 Ω 10 Ω

+
−

+

−

+

−

15 ΩVxVTh Vx
1

3

A

B

Fig. 3.223

5 A

150 V
30 Ω 10 Ω

+
−

15 ΩIN Vx
1

3

A

B

Vx

 

Fig. 3.224

75 V

A

B

37.5 Ω

Fig. 3.225

+ −

1 A

10 V

5 Ω 10 Ω

A

B

10 Ix

Ix

I1 I2

+

−

+

−

VTh

Fig. 3.227



3.3 Thevenin’s Theorem 3.59

Applying KVL to Mesh 2,

−5 1− 0 10 0=2( )2 1− 1− 0x

−5 1− 0 1− 0 0=2( )2 1 ( )1 2− −

5 5 01 25I5 =2I55  …(iii)

Solving Eqs (ii) and (iii),

I

I

I I Ix

1

2

1 2I

1

1

1 2

=
= −

I1 = 1 =

A

A

A( )11

Writing the V
Th

 equation,

10 10 0

10 10

20

2I V102

V

V

10 =
−

= −

ThVV

ThVV

ThVV

= 0

V

( )1−1

Step II Calculation of I
N
 (Fig. 3.228)

From Fig. 3.228,

I I Ix I1 2I−  …(i)

For Mesh 1,

I1 1=  …(ii)

Applying KVL to Mesh 2,

−5 1− 0 10 0=( )2 1 ( )−2 3−− 1− 0x

−5 1− 0 1− 0 0=( )2 1 ( )1 2 ( )2 3− − −

− + =5 5 10 01 25 3I55− I  …(iii)

Applying KVL to Mesh 3,

− − =10 10 0( )3 23 −

10 10 102 30I I102 310 =3I10 310  …(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

I IN

1

2

3

1

3

2

2

=
=
=

=I3

A

A

A

A

3

Step III Calculation of R
Th

R
V

IN
ThRR

ThVV
= =

−
= −

20

2
10 Ω

Step IV Thevenin’s Equivalent Network (Fig. 3.229)

 Example 3.53  Find Thevenin’s equivalent network at terminals A and B in the network of 

Fig. 3.230.

+ −

1 A

10 V

5 Ω 10 Ω

A

B

10 Ix

Ix

I1 I2

IN

I3

Fig. 3.228

−20 V

A

B

−20 Ω

Fig. 3.229
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A

B

2 Ω 4 Ω

5 Ω4Vx Vx

+

−

−
+

Fig. 3.230

Solution

Since the network does not contain any independent source,

V

IN

ThVV =
=

0

0

But the R
Th 

can be calculated by applying a known 

voltage source of 1 V at the terminals A and B as shown 

in Fig. 3.231.

R
V

I I
ThRR = =

1

From Fig. 3.231,

VxVV ( )I II1 2I−  ...(i)

Applying KVL to Mesh 1,

−

− [ ] − +

4 2 5 0=

4[ 2 5 5 0=

1 − 5

1 15 2

V I2− 1

− I5 15−

xV ( )1 2−

− =27 25 01 225I + I251 + 25  …(ii)

Applying KVL to Mesh 2,

− −5 4− 1 0=2( )2 1− I

5 9 11 29I99 =2I99   …(iii)

Solving Eqs (ii) and (iii),

I

I

1

2

0 21

0 23

= −

= −

A

A

Hence, current supplied by voltage source of 1 V is 0.23 A.

RThRR = =
1

0 23
4 35 Ω

Hence, Thevenin’s equivalent network is shown in Fig. 3.232.

 Example 3.54  Find the current in the 9 W  resistor in Fig. 3.233.

4 Ω
6 Ω 9 Ω

6Ix

20 V

−  +
Ix

 

Fig. 3.233

A

B

2 Ω 4 Ω

5 Ω4Vx Vx

+

−

−
+

I1 I2

1V

Fig. 3.231

4.35 Ω

A

B 

Fig. 3.232
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Solution

Step I Calculation of V
Th

 (Fig. 3.234)

Applying KVL to the mesh,

4 6 6 0

5

− 4 =
=

I6 66666

I

x x x6 66 I6 6666

x A
Writing the V

Th 
equation,

6 0

6 0

30

V

V

V

x

− =V

=

ThV

ThVVV

ThVV V

( )5

Step II Calculation of I
N
 (Fig. 3.235).

From Fig. 3.235,

I x = 0

The dependent source 6I
x 

depends on the controlling 

variable
 
I

x
. When

 
I x = 0,  the dependent source vanishes, 

i.e., 6 0x as shown in Fig. 3.236.

IN = =
20

4
5 A

4 Ω

6Ix

20 V

−  +

IN

4 Ω

20 V

IN

(a) (b)

⇒

A

B

A

B

Fig. 3.236

Step III Calculation of R
Th

R
V

IN
ThRR

ThVV
= = =

30

5
6 Ω

Step IV Calculation of I
L
 (Fig. 3.237)

IL = =
30

6 9+
2 A

 Example 3.55   Determine the current in the 16 W  resistor in Fig. 3.238.

10 Ω 6 Ω

16 Ω40 V 0.8Ix

Ix

 

Fig 3.238

4 Ω
6 Ω

6Ix

20 V

−  +
Ix

+

−

+

−

VTh

A

B

Fig. 3.234

4 Ω
6 Ω

6Ix

20 V

−  +
Ix

A

B

IN

Fig. 3.235

6 Ω

9 Ω30 V

A

B

IL

Fig. 3.237
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Solution

Step I Calculation of V
Th

 (Fig. 3.239)

From Fig. 3.239,

I x = 0

The dependent source 0.8I
x
 depends on the controlling 

variable
 
I

x
.
 
When

 
I

x
 = 0, the dependent source vanishes, as 

shown in Fig. 3.240.

i.e.,  0 8 0I x =
VThVV V= 40

Step II Calculation of I
N
 (Fig. 3.241)

From Fig. 3.241,

I Ix 2 …(i)

Meshes 1 and 2 will form a supermesh,

Writing current equation for the supermesh,

I I I I

I I

x1 2I I 2

1 2I I

0 8 0 8

1 8 0

=I2I

=I2I

. .I x8 0
 …(ii)

Applying KVL to the outer path of the supermesh,

40 10 6 0

10 6 40

1 26

1 26

−10 I 61 61

I 61 + 66
 …(iii)

Solving Eqs (ii) and (iii),

I

I

I IN

1

2

2

3

5

3

5

3

=

=

=I2

A

A

A

Step III Calculation of R
Th

R
V

IN
ThRR

ThVV
= = = Ω

40

5

3

Step IV Calculation of I
L
 (Fig. 3.242)

IL =
+

=
40

24 16
1 A

 Example 3.56  Find the current in the 6 W  resistor in Fig. 3.243.

1 Ω

6 Ω18 V 3 A

2Vx
−  +

−         +
Vx

Fig. 3.243

10 Ω 6 Ω

40 V 0.8Ix

A

B

VTh

+

−
 

Fig. 3.239

A

B

10 Ω 6 Ω

40 V VTh

+

−
 

Fig. 3.240

10 Ω 6 Ω

40 V 0.8Ix IN

A

B

Ix

I1 I2

 

Fig. 3.241

24 Ω

16 Ω40 V

A

B

IL

 

Fig. 3.242
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Solution

Step I Calculation of V
Th

 (Fig. 3.244)

From Fig. 3.244,

IxVV =1 1 1II= − …(i)

For Mesh 1,

I

VxVV

1 3

3

= −
=

A

V

…(ii)

Writing the V
Th

 equation,

18 1 2 0

18 3 2 0

27

1−1 − =
+ 3

=

I V21 V

V

V

xVV ThV

ThV

ThVV V

( )3

Step II Calculation of I
N
 (Fig. 3.245)

From Fig. 3.245,

V IxVV 1 …(i)

Meshes 1 and 2 will form a supermesh,

Writing current equation for supermesh,

I I2 1I 3=I1II  …(ii)

Applying KVL to the outer path of the supermesh,

18 1 2 0

18 2 0

6

1

1

1

−1 =
−

=

I V21

I 21 2+1

I1

xVV

( )1

A

…(iii)

Solving Eqs (ii) and (iii),

I

I IN

2

2

9

9

=
=I2

A

A

Step III  Calculation of R
Th

R
V

IN
ThRR

ThVV
= = = Ω

27

9
3

Step IV Calculation of I
L
 (Fig. 3.246)

IL = =
27

3 6+
3 A  

 Example 3.57  Find the current in the 10 W  resistor.

10 Ω

5 Ω100 V 10 A

−  +
10Vx

+

−
Vx

Fig. 3.247

1 Ω

18 V 3 A

2Vx

−  +
−         +

Vx

+

−

VTh

A

B

I1

Fig. 3.244

1 Ω

18 V 3 A

2Vx

−         +
Vx

A

B

I1 I2

−  +

IN

Fig. 3.245

3 Ω

6 Ω27 V

A

B

IL

Fig. 3.246
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Solution

Step I Calculation of V
Th

 (Fig. 3.248)

From the fi gure,

VxVV = 10 5 5= 0× V

Writing the V
Th

 equation,

100 10 0

100 9 0

100 9 0

550

− − =
−

− +
=

V V10+ V

V V9+
V

V

x xVV VV

xV

ThV

ThV

ThV

ThVV V

( )50

Step II Calculation of I
N
 (Fig. 3.249)

From Fig. 3.249,

VxVV 5( )N 1IN +INI 0

Applying KVL to Mesh 1, 

100 10 0

100

9

+10 =

= −

V V−

V

x xV VV

xVV

− =

= −

100

9
5 5+ 0

550

45
I

N

N A

Step III Calculation of R
Th

RThRR =
−

= − Ω
550

550

45

45

Step IV Calculation of I
L
 (Fig. 3.250)

IL =
− +

= −
550

45 10

110

7
A  

3.4    NORTON’S THEOREM

It states that ‘any two terminals of a network can be replaced by an equivalent current source and an equivalent 

parallel resistance.’ The constant current is equal to the current which would fl ow in a short circuit placed across 

the terminals. The parallel resistance is the resistance of the network when viewed from these open-circuited 

terminals after all voltage and current sources have been removed and replaced by internal resistances.

IN

or

IN

RN RL

IL

RL

IL

Network

(a) (b)

Fig. 3.251 Network illustrating Norton’s theorem

100 V 10 A

−  +
10VxVTh

+

−
Vx5 Ω

+         −VTh

A B

Fig. 3.248

100 V 10 A

−  +
10Vx

+

−
Vx 5 Ω

A B

IN

Fig. 3.249

−45 Ω

10 Ω550 V

A

B

IL

Fig. 3.250



3.4 Norton’s Theorem 3.65

Explanation Consider a simple network as shown in Fig.3.252

V RLR2

A

B

R3R1

Fig. 3.252 Network

For fi nding load current through RLR ,  fi rst remove the load 

resistor RLR  from the network and calculate short circuit 

current ISC or IN which would fl ow in a short circuit placed 

across terminals A and B as shown in Fig. 3.253.

For fi nding parallel resistance RNR , replace the voltage 

source by a short circuit and calculate resistance between 

points A and B as shown in Fig. 3.254.

R R
R R

R R
NR +R3RR

1 2R RR

1 2R RR

Norton’s equivalent network is shown in Fig.3.255.

I I
R

R R
L NI I

NR

N LR R

If the network contains both independent and dependent 

sources, Norton’s resistances R
N
 is calculated as

R
V

I
NR

N

= ThVV

where V
Th

 is the open-circuit voltage across terminals A and 

B. If the network contains only dependent sources, then 

V

IN

ThVV =

=

0

0

To fi nd R
Th

 in such network, a known voltage V or current 

I is applied across the terminals A and B, and the current I or 

the voltage V is calculated respectively.

R
V

I
NR =

Norton’s equivalent network for such a network is shown in 

Fig. 3.256.

V INR2

A

B

R3R1

Fig. 3.253 Calculation of I
N

RNR2

A

B

R3R1

Fig. 3.254 Calculation of R
N

RL

IL

RNIN

Fig. 3.255 Norton’s equivalent network

RN

A

B

Fig. 3.256 Norton’s equivalent network
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Steps to be followed in Norton’s Theorem

1. Remove the load resistance R
L
 and put a short circuit across the terminals.

2. Find the short-circuit current I
SC

 or I
N
.

3. Find the resistance R
N
 as seen from points A and B.

4. Replace the network by a current source I
N 

in parallel with resistance R
N
.

5. Find current through R
L
 by current–division rule.

I
I R

R R
L

N NI R

N LR R
=

 Example 3.58  Find the current through the 10 W  resistor in Fig. 3.257.

10 Ω

5 Ω

4 A
15 Ω

2 V

1 Ω

Fig. 3.257

Solution

Step I Calculation of I
N
 (Fig. 3.258)

Applying KVL to Mesh 1,

2 1 0

2

1

1

=1 1

=
I11

I1 ...(i)

Meshes 2 and 3 will form a supermesh.

Writing the current equation for the supermesh,

I I3 2I I 4=I2I  ...(ii)

Applying KVL to the supermesh,

−5 15 0=2 35151− 5  ...(iii)

Solving Eqs (i), (ii) and (iii),

I

I

I

I I IN

1

2

3

1 2I

2

3

1

2 5

=
= −
=

I1 = 2 =

A

A

A

A( )33

Step II Calculation of R
N
 (Fig. 3.259) 

RNR = =1 0 95 ( )+5 15 Ω

Step III Calculation of I
L
 (Fig.3.260)

IL = =5
0 95

0 95 1+ 0
0× . A43

5 Ω

4 A
15 Ω

2 V

1 Ω

I2

IN

I3I1

A

B

Fig. 3.258

RN

5 Ω

15 Ω1 Ω
A

B

Fig. 3.259

IL

5 A 0.95 Ω 10 Ω

A

B

Fig. 3.260
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 Example 3.59  Find the current through the 10 W  resistor in Fig. 3.258.

V

2 Ω 10 Ω

12 V
8 Ω

5 Ω

Fig. 3.261

Solution

Step I Calculation of I
N
 (Fig. 3.262)

Applying KVL to Mesh 1,

− =
=

5 20 2 0

7 2 20

1 20 2

1 22

2+ 0 22+ 0 2−
I22−

( )−1 2I1 I
 ...(i)

Applying KVL to Mesh 2,

− − =
−

2 8− 12 0

2 10 1= − 2

2

1 20

( )2 1− I

1+ 01 1+ 0
 ...(ii)

Solving Eqs (i) and (ii),

I

I IN

2

2

0 67

0 67

= −
=I2 −

A

A

Step II Calculation of R
N
 (Fig. 3.263)

RNR = +( ) .8 9= 43 Ω

Step III Calculation of I
L
 (Fig. 3.264)

IL = = ↑0 67
9 43

9 43 1+ 0
0. (33 )×

 Example 3.60  Find the current in the 10 W  resistor in Fig. 3.265.

50 V 40 Ω
20 Ω

10 V

50 Ω

10 Ω

Fig. 3.265

20 V

2 Ω

12 V
8 Ω

5 Ω I1 I2

IN

A

B

Fig. 3.262

2 Ω

8 Ω

5 Ω RN

Fig. 3.263

IL

0.67 A 9.43 Ω 10 Ω

A

B

Fig. 3.264
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Solution

Step I Calculation of I
N
 (Fig. 3.266)

The resistance of Ω  becomes redundant as it is 

connected across the 50 V source (Fig. 3.267).

Applying KVL to Mesh 1,

50 50 20 10 0

70 20 40

1 20

1 220

− 50 − =
=2

I 201 201

I I201 202020

( )1 2− 2I1 I
 ...(i)

Applying KVL to Mesh 2,

10 20 0

20 20 01 220

− 20 =
−20 =

( )2 12 12

I I201 20+1

 ...(ii)

Solving Eqs (i) and (ii),
I

I

I IN

1

2

2

1

1 5

1 5

=
=

=I2

A

A

A

Step II Calculation of R
N
 (Fig. 3.268)

RNR = =50 20 14 28 . Ω

RN

40 Ω 20 Ω

A

B

50 Ω

Fig. 3.268 

Step III Calculation of I
L
 (Fig. 3.269)

IL =
+

=1 5
14 28

14 28 10
0 88

.

.
× A

IL

1.5 A 14.28 Ω 10 Ω

A

B

Fig. 3.269

 Example 3.61  Find the current through the 10 W  resistor in Fig. 3.270.

10 V 1 Ω 3 Ω

20 V

2 Ω6 Ω

10 Ω

Fig. 3.270

50 V 40 Ω
20 Ω

10 V

50 Ω

IN

Fig. 3.266

20 Ω

10 V

50 Ω

IN

40 Ω

I1 I2

50 V

Fig. 3.267
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Solution

Step I Calculation of I
N
 (Fig. 3.271)

Applying KVL to Mesh 1,

6 1 0

7 10

1

1 2

− 6 =11( )1 22−I1 I

...(i)

Applying KVL to Mesh 2,

−
− =

1 2− 3 0=
6 3− 0

2 3

1 26 3

( )2 1 ( )−2 3− I 32 − 3

I + 61 + 6 I3 ...(ii)

Applying KVL to Mesh 3,

−
=

3 2− 0 0=
3 3 202 33

( )3 2−
I3 33− ...(iii)

Solving Eqs (i), (ii) and (iii), 

I

I IN

3

3

13 17

13 17

= −
=I3 −
.

.

A

A

Step II Calculation of R
N
 (Fig. 3.272)

RNR = =[( ) ] .6 1 3] 1 4. 6  ) ]+1 ] Ω

Step III Calculation of I
L
 (Fig. 3.273)

IL = = ↑13 17
1 46

1 46 1+ 0
.

.

.
. (68 )×

 Example 3.62  Find the current through the 10 W  resistor in Fig. 3.274.

50 V 20 Ω 20 Ω

20 Ω10 Ω 30 Ω

40 V

100 V

Fig. 3.274

Solution

Step I Calculation of I
N
 (Fig. 3.274)

Applying KVL to Mesh 1,

50 20 40 0

20 20 101 220

− 20 − =40

=2

( )1 211

I I201 202020
 ...(i)

Applying KVL to Mesh 2,

40 20 20 20 0

20 60 20 40

2 20

1 260 3

− 20 − 20 =
−20 =3− 20

( )2 1 ( )2 33−2 12 I 202 202 ( 33

I I601 60+1 I3I3  ...(ii)

10 V 1 Ω 3 Ω

20 V

2 Ω6 Ω

I1 I2 I3

IN

A

B

Fig. 3.271

1 Ω 3 Ω

2 Ω6 Ω

RN

A

B

Fig. 3.272

1.46 Ω 10 Ω

2 Ω

IL

A

B

13.17 A

Fig. 3.273

50 V 20 Ω 20 Ω

20 Ω 30 Ω

40 V

100 V

I1 I2 I3

NA BIN

Fig. 3.275
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Applying KVL to Mesh 3,

− − − =
− = −

20 30 100 0

20 50 100

3

2 350

( )3 23 − I3

I I+ 502 3+ 50
 ...(iii)

Solving Eqs (i), (ii) and (iii), 

I

I IN

1

1

0 81

0 81

=
=I1

A

A

Step II Calculation of R
N
 (Fig. 3.276)

RNR = =[( ) ] .20 30 20 12 3  ) ]+30 Ω 20 Ω 20 Ω

20 Ω 30 ΩRN

A B

Fig. 3.276

Step III Calculation of I
L
 (Fig. 3.277)

IL = =0 81
12 3

12 3 1+ 0
0 45

.

.
× A

12.3 Ω 10 Ω

IL

A

B

0.81 A

Fig. 3.277

 Example 3.63  Obtain Norton’s equivalent network as seen by R
L
 in Fig. 3.278.

120 V 60 Ω 30 Ω

10 Ω30 Ω RL

10 V

40 V

Fig. 3.278

Solution

Step I Calculation of I
N
 (Fig. 3.279)

Applying KVL to Mesh 1,

120 30 60 0

90 60 120

1 60

1 260

− 30 =

=2

I 601 601

I I601 606060

( )1 22−I1 I

 ...(i)

120 V 60 Ω 30 Ω

10 Ω30 Ω

10 V

40 V

I1 I2 I3

NA BIN

Fig. 3.279
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Applying KVL to Mesh 2,

− + − =
− − =

60 40 10 30 0

60 100 30 40

2 30

1 2100 3

( )2 1 ( )−2 32 1− I 302 − 30( 3

I I+1001 +100 I3  ...(ii)

Applying KVL to Mesh 3,

− + =
= −

30 10 0

30 30 102 330

( )3 23 −
I I30 32 − 30  ...(iii)

Solving Eqs (i), (ii) and (iii), 

I

I IN

3

3

4 67

4 67

=
=I3

A

A

Step II Calculation of R
N
 (Fig. 3.280)

RNR = =[( ) ]30 60 30 15  ) ]+60 Ω

Step III Norton’s equivalent network (Fig. 3.281)

 Example 3.64  Find the current through the 8 W  resistor in Fig. 3.282.

5 A
4 Ω 2 A

8 Ω12 Ω

5 V

Fig. 3.282

Solution

Step I Calculation of I
N
 (Fig. 3.283)

5 A 4 Ω 2 A12 Ω

5 V

IN

A

B

Fig. 3.283

The resistor of the 4 Ω gets shorted as it is in parallel with the short circuit. Simplifying the network by 

source transformation (Fig. 3.284),

60 V

12 Ω 5 V

IN

A

B

I1 I2

2 A

Fig. 3.284

60 Ω 30 Ω

10 Ω30 Ω
RN

A B
RN

Fig. 3.280

15 Ω RL

A

B

4.67 A

Fig. 3.281
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Meshes 1 and 2 will form a supermesh.

Writing the current equation for the supermesh,

I I2 1I 2=I1II  ...(i)

Applying KVL to the supermesh,

60 12 5 0

12 55
1

1

−1−12

=
I1I11

I1  ...(ii)

Solving Eqs (i) and (ii),

I

I

I IN

1

2

2

4 58

6 58

6 58

=
=

=I2

A

A

A

Step II Calculation of R
N
 (Fig. 3.285)

RNR = 12 4 3= Ω

Step III Calculation of I
L
 (Fig. 3.286)

IL = =6 58
3

3 8+
1 79. .58 1× A

 Example 3.65  Find the current through the 1 W  resistor in Fig. 3.287.

1 Ω
3 Ω

2 Ω

2 Ω1 A

1 V

2 Ω

Fig. 3.287

Solution

Step I Calculation of I
N
 (Fig. 3.288)

3 Ω

2 Ω

2 Ω1 A

1 V

2 Ω

IN

A

B

Fig. 3.288

4 Ω12 Ω RN

A

B

Fig. 3.285

3 Ω 8 Ω

IL

A

B

6.58 A

Fig. 3.286
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By source transformation (Fig. 3.289),

I2

I1

I3

IN

A

B

3 Ω

2 Ω

2 Ω1 V

3 V

2 Ω

Fig. 3.289

Applying KVL to Mesh 1,

− =
= −

3 3− 2 1+ 0

5 2 2

1

1 3

I 21 − 2

I2 32−
( )−1 3

 ...(i)

Applying KVL to Mesh 2,

− −
= −

1 2− 2 0=
4 2 1

2

2 3

( )2 32 3−
I22 32−

 ...(ii)

Applying KVL to Mesh 3,

− =
− +

2 2− 0

2 2 4 0=1 2 3

( )3 1 ( )3 2− 3 −
I21 2−

 ...(iii)

Solving Eqs (i), (ii) and (iii), 

I

I

I

I IN

1

2

3

3

0 64

0 55

0 59

0 59

= −
= −
= −

=I3 −

A

A

A

A

Step II Calculation of R
N
 (Fig. 3.290)

RNR = 2 2. Ω

Step III Calculation of I
L
 (Fig. 3.291)

IL =
+

=0 59
2 2

2 2 1
0 41

.

.
× A

2.2 Ω 1 Ω

IL

A

B

0.59 A

Fig. 3.291

1.2 Ω 1 Ω

3 Ω

2 Ω

2 Ω

2 Ω3 Ω

2 Ω

2 Ω

2 Ω

A B

B

B

A

RN

A

(a)

(b)

(c)

Fig. 3.290
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EXAMPLES WITH DEPENDENT SOURCES

 Example 3.66  Find Norton’s equivalent network across terminals A and B of Fig. 3.292.

10 Ω

5 V

10 Ω 5 Ω

A

B

− +
I1

10I2

3I1

I2

+
−

Fig. 3.292

Solution

Step I Calculation of V
Th

 (Fig. 3.293)

From Fig. 3.293,

I I

I I

x

x

2

1

Applying KVL to the mesh,

5 10 5 10 0

5 10 5 10 0

210 − =10 2

10 − =10

I5 I

I5 I

x x5 I5

x x5 I5 x

I

I

x =
= −

0 2

0 21

A

A

Writing the V
Th

 equation,

5 10 3 0

5 10 2 0 0

2 4

110 − =

10 2 − −0 =

=

I3 1 V

V

V

x ThV

ThVV

ThVV  V

( .00 ) (3 . )22

.

Step II Calculation of I
N
 (Fig. 3.294)

From Fig. 3.294,

I I x2 …(i)

I I Iy xI1 −I …(ii)

Applying KVL to Mesh 1,

5 10 5 10 0

5 10 5 5 10 0

210 =

10 + 5

5 I10−

I5 10

x 55 y

x x5 I5 y x1010

( )−I IxI y

25 5 5I 5x y555 …(iii)

Applying KVL to Mesh 2,

10 5 3 10 0

10 5 5 3 10 0

2 15 3I 52 5 I3 I

55 I 3 10

y y

x y55 x y3 x y1010

5 −1I3 13 =

555 33 10

( )y x

( )y x

12 12 0I I12x yI I12 =I12 …(iv)

10 Ω

5 V

10 Ω 5 Ω

A

B

− +
I1

10I2

3I1

I2

+
−

Ix

VTh

+

−

Fig. 3.293

10 Ω

5 V

10 Ω 5 Ω

A

B

− +
I1

10I2

3I1

I2

+
−

Ix Iy

IN

Fig. 3.294
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Solving Eqs (iii) and (iv),
I

I

x

y

=
=

0 25

0 25

A

 A

I IN yI I =II 0. A25

Step III Calculation of R
N
 

R
V

I
NR

N

= = =ThVV 2 4

0 25
9 6

.
Ω

Step IV Norton’s Equivalent Network (Fig. 3.295)

 Example 3.67   For the network shown in Fig. 3.296, fi nd Norton’s equivalent network.

2 A

A

B

20 Ω

2 Ω

15 Ω

5 Ω

Vx

3Vx

+

−

Fig. 3.296

Solution

Step I Calculation of V
Th

 (Fig. 3.297)

From Fig. 3.297,

V IxVV 2 2 …(i)

For Mesh 1,

I Ix1I VxV 23 3VVxVV 6( )22I2I …(ii)

For Mesh 2,

I2 2= …(iii)

I1 26 6I2I 12( )2 A

Writing the V
Th

 equation,

V I

V

V

ThVV

ThVV

+
+ − =

=

0 15 2 0I =I

5 1+ 5 2 0

27

1 +15 2− 2II( )I II1II 2

( )1− 2 ( )1− 2 2− ( )2

ThVV 444 V

Step II Calculation of I
N
 (Fig. 3.298)

From Fig. 3.298,

VxVV 2( )I I−I2 3I− …(i)

For Mesh 2,

I2 2= …(ii)

9.6 Ω

A

B

0.25 A

Fig. 3.295

2 A

A

B

20 Ω

2 Ω

15 Ω

5 Ω

Vx

VTh

3Vx

+

−

−

−

+
+

I1

I2

+

−

Fig. 3.297

2 A

A

B

20 Ω

2 Ω

15 Ω

5 Ω

Vx

I3

IN

3Vx

+

−

I1

I2

Fig. 3.298
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Meshes 1 and 3 will form a supermesh.

Writing the current equation for the supermesh,

I I V I IxV3 1I I 2 3I3 3VVV 6 6=I1II [ ][ ]2 −I22 3I I2 3II2

I I1 2 3726 7I 0=I37I2I   …(iii)

Applying KVL to the outer path of the supermesh,

− − =5 20 2− 15 01 320202− 0 ( )3 2I I3 − ( )1 2I I1 −
− − =20 1 22 01 27 3I I+171 +17 I3   …(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

I IN

1 A

A

A

A

= −
=
=

=I

0 16

2

1 69

1 69

2

3

3

Step III Calculation of R
N
 

R
V

I
NR

N

= = =ThVV 274

1 69
162 13. Ω

Step IV Norton’s Equivalent Network (Fig. 3.299)

 Example 3.68  Obtain Norton’s equivalent network across A-B in the network of Fig. 3.300.

15 V 8 Ω 15 Ω

2 Ω5 Ω

+
−

V1

I2

10I2 0.6V1

+

−

A

B

Fig. 3.300

Solution

Step I Calculation of V
Th

 

(Fig. 3.301)

From Fig. 3.301,

V y1VV 8( )I Ix yI−I …(i)

Applying KVL to Mesh 1,

15 5 8 0− 5 =8x 88 y( )−I IxI y

13 8 15I 8x y888 …(ii)

Applying KVL to Mesh 2,

− =8 2− 10 02( )− I I−10y y

8 10 10 0210x y101010 …(iii)

162.13 Ω

A

B

1.69 A

Fig. 3.299

15 V 8 Ω 15 Ω

2 Ω5 Ω

+
−

V1

I2

10I2 0.6V1
VTh

+ +

−

+

−

−

A

B

Ix Iy I2

Fig. 3.301
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For Mesh 3,

I V y2 1VV0 6 0 6 8=V1VV ⎡⎣⎡⎡ ⎤⎦⎤⎤.1VV 0 ( )I Ix yI I

4 8 4 8 02.8I I4 8 Ix y8.4I I4 84 −I4 8 =   …(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

x

y

=
=

= −

3 28

3 45

0 832

A

A

A

Writing the V
Th

 equation,

15 0

15 83 0

12 45

2I V2

V

V

=V

83

= −

ThVVV

ThV

ThVV V

( .0−0 )

.

Step II Calculation of I
N
 (Fig. 3.302)

From Fig. 3.302,

I2 0=  

The dependent source of 10 I
2
 depends 

on the controlling variable I
2
. When 

I2 = 0,  the dependent source vanishes, 

i.e. 10 0I2 =  as shown in Fig. 3.303.

From Fig. 3.303,

V y1VV 8( )I Ix yI−I …(i)

Applying KVL to Mesh 1,

15 5 8 0− 5 =8x 88 y( )−I IxI y

13 8 15I 8x y888   …(ii)

Applying KVL to Mesh 2,

− =8 2− 0( )− Iy y

−8 10 0=1+ 0x y01+ 0   …(iii)

Solving Eqs (ii) and (iii),

I

I

x

y

=
=

2 27

1 82

.  A

A

V y1VV 8 8 27 1 3 68 27 =( )x yI Ix yII ( .22 . )82 .6 V

For Mesh 3, 

I VN =V0 6 0 6 6 161VV1VVVV .0V1VV ( .3 ) .= 2  A

Step III Calculation of R
N
 

R
V

I
NR

N

= =
−

= −ThVV 12 45

2 16
5 76

.

.
Ω

Step IV Norton’s Equivalent Network (Fig. 3.304)

15 V 8 Ω 15 Ω

2 Ω5 Ω

+
−

V1

I2

10I2 0.6V1
IN

+

−

A

B

Fig. 3.302

15 V 8 Ω

2 Ω5 Ω

V1 0.6V1
IN

+

−

A

B

Ix Iy

Fig. 3.303

−5.76 Ω

A

B

2.16 A

Fig. 3.304
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 Example 3.69  Find Norton’s equivalent network of Fig. 3.305.

A

B

2 Ω

1 Ω

+
−

2 V

0.5I1

I1

Fig. 3.305

Solution

Step I Calculation of V
Th

 (Fig. 3.306)

Applying KVL to the mesh,

2 2 0 1 0

2 2 5 0

0 8

1 10 5 1

1

1

− 2 −1

2 5

=

I I0 51 10 5+1

I1

.

.8 A

Writing the V
Th

 equation,

1 0

1 8 0

0 8

1 V1

V

V =

ThV

ThV

ThVV  V

( .0 )

Step II Calculation of I
N
 (Fig. 3.307)

When a short circuit is placed across the 1 Ω resistor, it gets shorted.

I1 0=

The dependent source of 0 5 1I1  depends on the controlling variable 

I
1
. When I1 0= ,  the dependent source vanishes, i.e. 0.5 I

1
 = 0 as shown 

in Fig. 3.308.

IN = =
2

2
1 A

Step III Calculation of R
N
 

R
V

I
NR

N

= = =ThVV 0 8

1
0 8 Ω

Step IV Norton’s Equivalent Network (Fig. 3.309)

0.8 Ω

A

B

1 A

Fig. 3.309

A

B

2 Ω

1 Ω

+
−

2 V

0.5I1

I1

VTh

+

+

−

−

Fig. 3.306

A

B

2 Ω

1 Ω

+
−

2 V

0.5I1

I1

IN

Fig. 3.307

A

B

2 Ω

2 V

IN

Fig. 3.308
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 Example 3.70  Find Norton’s equivalent network at the terminals A and B of Fig. 3.310.

9 V

2 Ω

6 Ω

3 Ω
A

B

Ix

6Ix

Fig. 3.310

Solution

Step I Calculation of V
Th

 (Fig. 3.311)

From Fig. 3.311,

I Ix 1 …(i)

Applying KVL to Mesh 1,

9 3 6 013 − 6( )1 211

9 3 91 23I33 =2I33 …(ii)

For Mesh 2,

I Ix2 1IIx6 6II xII

6 01 2 …(iii)

Solving Eqs (ii) and (iii),

I

I

1 A

A

= −
= −

1

62

Writing the V
Th

 equation,

9 3 2 0

9 3 2 0

18

23 + 2

3 + − =
= −

( )1 2

( )1 6− 6 ( )66
11 V2

V

V

ThV

ThVV

ThVV  V

Step II Calculation of I
N
 (Fig. 3.312)

From Fig. 3.312,

I I Ix I1 3I−   …(i)

Applying KVL to Mesh 1,

9 3 6 03 − 6( )1 2 ( )1 311

9 3 6 91 23 3I33 −23   …(ii)

For Mesh 2,

I x2 x6 6II xII ( )I I1II 3

6 6 01 2 3I3 =   …(iii)

Applying KVL to Mesh 3,

− =6 2− 0( )3 1 ( )3 2− 3 −
− +6 2 8 0=1 22 3I22−   …(iv)

9 V

2 Ω

6 Ω

3 Ω
A

B

Ix

6Ix

+ − − + +

−
I1

I2

VTh

Fig. 3.311

9 V

2 Ω

6 Ω

3 Ω
A

B

Ix

6Ix

I1

I2

IN

I3

Fig. 3.312



3.80 Network Analysis and Synthesis

Solving Eqs (ii), (iii) and (iv),

I

I

I

I IN

1 A

 A

A

 A

=
=
=

=I

5

3

4 5

4 5

2

3

3

Step III Calculation of R
N
 

R
V

I
NR

N

= =
−

= −ThVV 18

4 5
4 Ω

Step IV Norton’s Equivalent Network (Fig. 3.313)

 Example 3.71   Find Norton’s equivalent network to the left of terminal A-B in Fig. 3.314.

4 Ω6 Ω

A

I

B

0.5I

Fig. 3.314

Solution Since the network does not contain any 

independent source,

V

IN

ThVV =
=

0

0

But R
N
 can be calculated by applying a known current 

source of 1 A at the terminals A and B as shown in Fig. 

3.315.

From Fig. 3.315,

I
V

=
6

Applying KCL at the node,

V
I

V

V V V

V

6
0 5

4
1

6
0 5

6 4
1

1

6

0 5

6

1

4
1

+ +I0 5 =

+ ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+ =

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

V = 2

R
V

NR = = =
1

2

1
2 Ω

Hence, Norton’s equivalent network is shown in Fig. 3.316.

−4 Ω

A

B

4.5 A

Fig. 3.313

4 Ω6 Ω 1 A

A
V

I

B

0.5I

Fig. 3.315

2 Ω

A

B

Fig. 3.316
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 Example 3.72  Find the current through the 2 W  resistor in the network shown in Fig. 3.317.

2 Ω

4 Ω 10 Ω−10 V

−2Ix

2 A

Ix

+
−

Fig. 3.317

Solution

Step I Calculation of V
Th

 (Fig. 3.318)

From Fig. 3.318,

I x = 0

The dependent source of −2 I
x
 depends on 

the controlling variable I
x
. When I x = 0,  the 

dependent source vanishes, i.e. −2 0=x  as 

shown in Fig. 3.319.

I1 2=  

Writing the V
Th

 equation,

− −

− − − =

= −

10 4 0=

10 4 0

18

1V I− 4 1

V

V

ThVV

ThVV

ThVV V

( )2

Step II Calculation of I
N
 (Fig. 3.320)

From Fig. 3.320,

I Ix 1 …(i)

Mesh 1 and 2 will form a supermesh.

Writing the current equation for the 

supermesh,

I I2 1I 2=I1II …(ii)

Applying KVL to the outer path of the 

supermesh,

− −10 0=4( )2 3−

− =4 4 102 3I4+2 34+ …(iii)

For Mesh 3,

I I I3 1I IIxI2 2( )x2II xII

2 01 3 …(iv)

4 Ω 10 Ω−10 V

−2Ix

2 A

Ix

+
−

VTh

A B

+ −Th

Fig. 3.318

4 Ω 10 Ω−10 V 2 A

Ix

+
−

VTh

A B

+ −Th

I1

Fig. 3.319

4 Ω 10 Ω−10 V

−2Ix

2 A

IxIN

+
−

A BIN

I2 I3I1

Fig. 3.320
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Solving Eqs (ii), (iii) and (iv),

I

I

I

I IN

1

2

3

1

4 5

6 5

9

4 5

=
=
=

=I1

 A

A

A

A

Step III Calculation of R
N
 

R
V

I
NR

N

= =
−

= −ThVV 18

4 5
4 Ω

Step IV Calculation of I
L
 (Fig. 3.321)

IL = ×
−

−
=4 5

4

4 2+
9.  ×5 9 A

 Example 3.73  Find the current through the 2W  resistor in the network of Fig. 3.322.

1 Ω
2 Ω

5 V

Vi

4Vi
−
+

− +
V

Fig. 3.322

Solution

Step I Calculation of V
Th

 (Fig. 3.322)

From Fig. 3.323,

5 4 0

1

=
= −

V V4

V

i iV VV V4

iVV V

Writing the V
Th

 equation,

−4 0=
4 4= − 4=

V V−
V V= −4

iVV

iVV

ThV

ThVV  V( )−1

Step II Calculation of I
N
 (Fig. 3.324)

From Fig. 3.324,

5 0

5= −
V

V

iVV

iVV  V

Applying KVL to the mesh,

− =4 1 0

4 4= − 2= 0

V I1

I = 4

i NV IV 1−

N iI VV= −4 ( )−5  A

IL

−4 Ω 2 Ω

A

B

4.5 A

Fig. 3.321

1 Ω

5 V

Vi

4Vi

VTh

−
+

− +
V

+

−

A

B

Fig. 3.323

1 Ω

5 V

Vi

4Vi

IN

−
+

− +
V A

B

Fig. 3.324
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Step III Calculation of R
N
 

R
V

I
NR

N

= = =ThVV 4

20
0 2 Ω

Step IV Calculation of I
L
 (Fig. 3.325)

IL = ×
+

=20
0 2

0 2 2
1 82.82 A

 Example 3.74   Find the current in the 2 W  resistor in the network of Fig. 3.326.

10 V

1 Ω

2 Ω3 Ω1 A

2IxIx

Fig. 3.326

Solution

Step I Calculation of V
Th

 (Fig. 3.327)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I2 1I 1=I1II   …(i)

Applying KVL to the outer path of the 

supermesh,

10 1 3 01 23−1 =I33

I1 23 1I2 0I2I   …(ii)

Solving Eqs (i) and (ii),

I

I

1  A

A

=
=

1 75

2 752

Writing the V
Th

 equation,

3 0

3 75 0

8 25

2 V2

V

V

− =V

=

ThV

ThVVV

ThVV  V

( .2 )

Step II Calculation of I
N
 (Fig. 3.328)

From Fig. 3.328,

I Ix 1   …(i)

Meshes 1 and 2 will form a supermesh.

Writing the current equation for the supermesh,

I I2 1=I1   …(ii)

Applying KVL to the outer path of the supermesh,

10 1 3 01 3−1 =33( )2 3− 3I I33

0.2 Ω 2 Ω

A

B

20 A

Fig. 3.325

10 V

1 Ω

3 Ω1 A

2IxIx
A

B

I1 I2

VTh

++

−
−

Fig. 3.327

10 V

1 Ω

3 Ω1 A

2Ix

I3

Ix

I1 I2

IN

Fig. 3.328
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I I1 2 3323 3I 10=I33I2I …(iii)

For Mesh 3,

I I3 1IIx2 2II xII

2 01 3 …(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

I IN

1 A

A

A

A

= −

= −

= −

=I −

3 5

2 5

7

7

2

3

3

Step III Calculation of R
N

R
V

I
NR

N

= =
−

= −ThVV 8 25

7
1 18. Ω

Step IV Calculation of I
L
 (Fig. 3.329)

IL = − ×
−

−
=7

1 18

1 18 2+
10 07

.

.
.07 A

 Example 3.75   Find the current through the 10 W  resistor for the network of Fig. 3.330.

2 Ω

10 V

5 Ω 10 Ω

Ix

3Ix

−  +

Fig. 3.330

Solution

Step I Calculation of V
Th

 (Fig. 3.331)

Applying KVL to the mesh,

10 2 3 5 0

2 5

− 2 − 5

=

I3

I

x x3I3 x

x .5 A

Writing the V
Th

 equation,

5 0

5 5 0

12 5

V

V

V

x

=

ThV

ThV

ThVV  V

( .2 )

.

Step II Calculation of I
N
 (Fig. 3.332)

From Fig. 3.332,

I x = 0

−1.18 Ω 2 Ω

A

B

−7 A

IL

Fig. 3.329

2 Ω

10 V

5 Ω

Ix

3Ix

−  + A

VTh

+
+

−

−
B

Fig. 3.331

2 Ω

10 V

5 Ω

Ix

IN

3Ix

− +

Fig. 3.332
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The dependent source of 3 I
x
 depends on the controlling variable I

x
. 

When I x = 0,  the dependent source 3 I
x
 vanishes, i.e. 3 I

x
 = 0 as 

shown in Fig. 3.333.

N = =
10

2
5 A

Step III Calculation of R
N
 

R
V

I
NR

N

= = =ThVV 12 5

5
2 5

.
Ω

Step IV Calculation of I
L
 (Fig. 3.334)

IL = ×
+

=5
2 5

2 5 10
1 A

 Example 3.76  Find the current through the 5 W  resistor in the network of Fig. 3.335.

12 V

2 Ω 4 Ω

5 Ω 4Ix
+
−

Ix

Fig. 3.335

Solution

Step I Calculation of V
Th

 (Fig. 3.336)

Applying KVL to the mesh,

12 2 4 4 0

12 10 0

1 2

− 2

− =10

=

I4 4− 4

I

I

x xI II4 x

x

x .2 A

Writing the V
Th

 equation,

12 2 0

12 2 1 2 0

9 6

− 2

− −2 1 2 =
=

V

V

V

x ThV

ThVV

ThVV  V

( .111 )

Step II Calculation of I
N
 (Fig. 3.337)

From Fig. 3.337,

I Ix 1 …(i)

Applying KVL to Mesh 1,

12 2 01− 2

I1 6=  A …(ii)

Applying KVL to Mesh 2,

− =4 4 0I4− x2

− =4 4 01I4− 12 …(iii)

Solving Eqs (ii) and (iii),

I2 A= −6

I I IN −I = =1 6 − 122  A( )6−

2 Ω

10 V

IN

A

B

Fig. 3.333

2.5 Ω 10 Ω

A

B

5 A

IL

Fig. 3.334

12 V

2 Ω 4 Ω

4Ix
+
−

Ix

A

B

VTh

+
+ −

−

Fig. 3.336

12 V

2 Ω 4 Ω

4Ix
+
−

Ix

I1 I2

IN

Fig. 3.337
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Step III Calculation of R
N
 

R
V

I
NR

N

= = =ThVV 9 6

12
0 8 Ω

Step IV Calculation of I
L
 (Fig. 3.338)

IL = ×
+

=12
0 8

0 8 5
1 66.66 A

 Example 3.77  Find the current through the 10 W  resistor for the network of Fig. 3.339.

4 Ω

5 V

5 Ω

10 ΩVx0.5Vx

+

−

Fig. 3.339

Solution

Step I Calculation of V
Th

 (Fig. 3.340)

For the mesh,

I V VxVV = −0 5 0 5.VxVV 0 ThVV

Writing the V
Th

 equation,

5 4 0 0

5 4 5 0

5

4

4 =

= −

I V0−

V V−

V

ThV

ThVV ThV

ThVV V

( .0− )

Step II Calculation of I
N
 (Fig. 3.341)

From Fig. 3.341,

VxVV = 0

The dependent source of 0 5VxVV  depends on the controlling 

variable V
x
. When VxVV = 0,  the dependent source vanishes, i.e. 0.5 

V
x
 = 0 as shown in Fig. 3.342.

IN = =
5

4 5+
5

9
A

Step III Calculation of R
N
 

R
V

I
NR

N

= =
−

= −ThVV 5

5

9

9 Ω

Step IV Calculation of I
L
 (Fig. 3.343)

IL = ×
−

−
= −

5

9

9

9 1+ 0
5 A

0.8 Ω 5 Ω12 A

IL

Fig. 3.338

4 Ω

5 V

5 Ω

0.5Vx

A

B

I

VTh = Vx

+

−

Fig. 3.340

4 Ω

5 V

5 Ω

0.5Vx

A

B

INVx

+

−

Fig. 3.341

4 Ω

5 V

5 Ω
A

B

IN

Fig. 3.342

−9 Ω 10 Ω

A

B

5
9

IL

A

Fig. 3.343
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 Example 3.78  Find the current through the 10 W  resistor in the network shown in Fig. 3.344.

12 V 25 Ω 10 Ω

1000 Ω

+
− 2Vx 5I1

+

−

Vx

I1

Fig. 3.344

Solution

Step I Calculation of V
Th

 (Fig. 3.345)

From Fig. 3.345,

V IxVV =2 125 1II= −125( )I1 …(i)

Applying KVL to Mesh 1,

12 1000 2 01−1000I V21 −1 xV  

12 1000 2 01−1000 =I 21 21 ( )1125( )125 1I125 1125125 1125 …(ii)

I

V IxVV

1

1

0 016

12 125 016 2

=
= − = −

.

( .0 )

A

V

Writing the V
Th

 equation,

V VxVVThVV V=V −2

Step II Calculation of I
N
 (Fig. 3.346)

From Fig. 3.346,

VxVV = 0

The dependent source of 2V
x
 depends 

on the controlling variable V
x
. When 

VxVV = 0,  the dependent source vanishes, 

i.e. 2 V
x
 = 0 as shown in Fig. 3.347.

I

I IN

1

1

12

1000
0 012

5 5I1 012 06

= = .

( .0 ) .0= −

 A

A

Step III Calculation of R
N
 

R
V

I
NR

N

= =
−

−
=ThVV 2

0 06
33 33. Ω

Step IV Calculation of I
L
 (Fig. 3.348)

IL = − ×
+

= −0 06
33 33

33 33 10
0 046

.

.
.046 A

12 V 25 Ω

1000 Ω

+
−

2Vx 5I1

+

−

Vx

I1
A

B

VTh

+

−

Fig. 3.345

12 V 25 Ω

1000 Ω

+
−

2Vx 5I1

+

−

Vx IN

I1
A

B

Fig. 3.346

12 V

1000 Ω

5I1 IN

I1
A

B

Fig. 3.347

33.33 Ω−0.06 A 10 Ω

A

B

IL

Fig. 3.348
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 Example 3.79   Find the current through the 5 W   resistor for the network of Fig. 3.349.

2 Ω1 Ω

1 Ω
5 Ω

2 A

4 V

4Vx
+
−

Vx
+ −

V

Fig. 3.349

Solution

Step I Calculation of V
Th

 (Fig. 3.350)

From Fig. 3.350,

V IxVV 2 …(i)

For the mesh,

I = 2 …(ii)

VxVV = =2 4( )2  V

Writing the V
Th

 equation,

4 2 1 4 0

4 2 2 4 0

26

V I2 I V4

V

V

xV +I2 4 =
+ +2 + −4 =

=

ThVV

ThVV

ThVV  V

( )4 ( )22

Step II Calculation of I
N
 (Fig. 3.351)

From Fig. 3.351,

VxVV 2( )I II1 2I− …(i)

For Mesh 1,

I1 2= …(ii)

Applying KVL to Mesh 2,

4 2 1 4 0

4 2 2 4 01 2 2 1 2 1

V 2 1

I I1 I2 I I2

xV 2 1 + =4

−2 −1I2 12 +1I1

( )2 1I I12I ( )2 1

[ (2 )]

11 11 41 2I I111 11 =2I1111 − …(iii)

Solving Eqs (ii) and (iii),
I

I

I IN

1

2

2

2

2 36

2 36

=
=

=I2

A

A

A

Step III Calculation of R
N
 

R
V

I
NR

N

= = =ThVV 26

2 36
11 02. Ω

Step IV Calculation of I
L
 (Fig. 3.352)

IL = ×
+

=2 36
11 02

11 02 5
1 62

.

.
.  62 A  

2 Ω1 Ω

1 Ω

2 A

4 V

4Vx
+
−

Vx
+ −

V A

B

VTh

+

−

I

Fig. 3.350

2 Ω1 Ω

1 Ω

2 A

4 V

4Vx
+
−

Vx
+ −

V A

B

IN

I2

I1

Fig. 3.351

11.02 Ω2.36 A 5 Ω

A

B

IL

Fig. 3.352
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 Example 3.80   Find the current through the 1 W  resistor in the network of Fig. 3.353.

12 V

6 Ω

1 Ω3 Ω3Ix

Ix

Fig. 3.353

Solution

Step I Calculation of V
Th

 (Fig. 3.354)

From Fig. 3.354,

I Ix 1   …(i)

Meshes 1 and 2 will form a supermesh.

Writing the current equation for the supermesh,

I I Ix2 1I 13 3I x=I1II

4 01 2   …(ii)

Applying KVL to the outer path of the supermesh,

12 6 3 01 23− 6 =I33  

6 3 121 23I3 =2I33   …(iii)

Solving Eqs (ii) and (iii),

I

I

1 A

A

=
=

0 67

2 672

Writing the V
Th

 equation,

3 0

3 67 0

8

2 V2

V

V

− =V

=

ThV

ThVVV

ThVV  V

( .2 )  

Step II Calculation of I
N
 (Fig. 3.355)

When a short circuit is placed across a 3 Ω resistor, it 

gets shorted as shown in Fig. 3.356.

From Fig. 3.356,

I Ix 1  …(i)

Meshes 1 and 2 will form a supermesh.

Writing the current equation for the supermesh,

I I Ix 1IIx2 I 3 3II x=II

4 01 2 …(ii)

Applying KVL to the outer path of the supermesh,

12 6 01− 6

I1 2= …(iii)

12 V

6 Ω

3 Ω3Ix

Ix

VTh

++

−
−

I1 I2

Fig. 3.354

12 V

6 Ω

3 Ω3Ix

Ix

IN

A

B

Fig. 3.355

12 V

6 Ω

3Ix

Ix

IN

A

B

I1 I2

Fig. 3.356
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Solving Eqs (ii) and (iii),

I

I

I IN

1  A

A

A

=
=

=I

2

8

8

2

2

Step III Calculation of R
N
 

R
V

I
NR

N

= = =ThVV 8

8
1 Ω

Step IV Calculation of I
L
 (Fig. 3.357)

IL = × =8
1

1 1+
4 A

 Example 3.81  Find the current through the 1.6 W  resistor in the network of Fig. 3.358.

1 Ω 6 Ω 1.6 Ω10 A

3Ix

Ix

−  +

Fig. 3.358

Solution

Step I Calculation of V
Th

 (Fig. 3.359)

From Fig. 3.359,

I I Ix I1 2I− …(i)

For Mesh 1,

I1 10= …(ii)

Applying KVL to Mesh 2,

−
− + =

1 3+ 6 0=
3 6− 0

2

2 1 2

( )2 1

( )1 2

− I − 6

I I+2 1+ −− I

x

4 10 01 20101 101010 …(iii)

Solving Eqs (ii) and (iii),

I

I

1 A

A

=
=

10

42

 

Writing the V
Th

 equation,

6 0

6 0

24

2 V2

V

V

− =V

=

ThV

ThVVV

ThVV V

( )4

1 Ω8 A 1 Ω

A

B

IL

Fig. 3.357

1 Ω 6 Ω10 A

3Ix

Ix

−  +

VTh

+

−

+

−

A

B

I1 I2

Fig. 3.359
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Step II Calculation of I
N
 (Fig. 3.360)

When a short circuit is placed across the 3 Ω resistor, 

it gets shorted as shown in Fig. 3.361.

From Fig. 3.361,

I I Ix I1 2I− …(i)

For Mesh 1,

I1 = 10 …(ii)

Applying KVL to Mesh 2,

− =
− +

1 3+ 0

0=32 1

( )2 1

( )1 2

− I

I I+2 1+ −−
x

4 4 01 2I41 4 =2I44 …(iii)

Solving Eqs (ii) and (iii),

I

I

I IN

1 A

A

 A

=
=

=I

10

10

10

2

2

Step III Calculation of R
N
 

R
V

I
NR

N

= = =ThVV 24

10
2 4. Ω

Step IV Calculation of I
L
 (Fig. 3.362)

IL = ×
+

=10
2 4

2 4 1 6
6

.

. .+4 1
A

3.5    MAXIMUM POWER TRANSFER THEOREM

It states that ‘the maximum power is delivered from a source to a load when the load resistance is equal to 

the source resistance.’

Proof From Fig. 3.363,

I
V

R Rs LR R
=

Power delivered to the load R P I R
V R

L LR P I R
LR

=PP =2
2

2( )Rs RLR+
To determine the value of R

L
 for maximum power to be transferred 

to the load,

dP

dR

dP

dR

d

dR

V
R

V R R R R

R

LR

L LR dR
LR

s LR L sR R LR

sR

=

=

=
+ RLR

0

2

2

2

2 2R R+ R

( )R Rs LR R

[( ) (2 )( )]

( ++ RLR )4

1 Ω 6 Ω10 A

3Ix

Ix

IN

−  + A

B

Fig. 3.360

1 Ω10 A

3Ix

Ix

IN

− + A

B

I1 I2

Fig. 3.361

2.4 Ω10 A 1.6 Ω

A

B

IL

Fig. 3.362

V

RS

RL

I

Fig. 3.363  Network illustrating 

maximum power transfer 

theorem
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( ) ( )

R R

R R

L (

s LR s L L s LR

s LR R

−)

+RLR =

2

2 2RR 2

2 0( )R (L (R ( =)

2 2 2R R R Rs LR R L sR RR R− −RR R 0

Hence, the maximum power will be transferred to the load when load resistance is equal to the source 

resistance.

Steps to be followed in Maximum Power Transfer 

Theorem

1. Remove the variable load resistor R
L
.

2. Find the open circuit voltage V
Th

 across points A and B.

3. Find the resistance R
Th

 as seen from points A and B.

4. Find the resistance R
L
 for maximum power transfer.

R RLR ThRR

5. Find the maximum power (Fig. 3.364).

I
V

R R

V

R

P I R
V

R
R

V

R

L
LR

L LR

= =

=I RL LR × =R

ThVV

ThRR

ThVV

ThRR

ThVV

ThRR
ThRRR

ThVV

ThRR

2

4 4

2
2

2

2

maPP x

 Example 3.82  Find the value of resistance R
L
 in Fig. 3.365 for maximum power transfer and 

calculate maximum power.

3 V

6 V

10 V

2 Ω

2 Ω

2 Ω

RL

Fig. 3.365

Solution

Step I Calculation of V
Th

 (Fig. 3.366)

Applying KVL to the mesh,

 3 2 2 6 0

0

2 =
= −

I 2− 2

I . A75

 

Writing the V
Th

 equation,

6 2 10 0

6 2 10 6 2 75 5

5

2 − =10

− =10 2

=

I V−

V I6 2= 6

ThVV

ThVV V

terminal

( .0− ) .10 510

. (5 V B ABB is positive w.r.t )

VTh

RTh

RL = RTh

A

B

IL

Fig. 3.364 Thevenin’s equivalent network

3 V

6 V

10 V

A B2 Ω

2 Ω

2 Ω

VTh
+ −+

+

−

−

I

Fig. 3.366
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Step II Calculation of R
Th

 (Fig. 3.367)

RThRR = +( ) 2 3= Ω

Step III Calculation of R
L

For maximum power transfer,

R RLR =RThRRR 3 Ω

Step IV Calculation of P
max 

(Fig. 3.368)

P
V

R
maPP x

( . )
= = =ThVV

ThRR
W

2 2( )

4

5.

4 3
2 5. 2

3 Ω

3 Ω5.5 V

A

B

Fig. 3.368

 Example 3.83  Find the value of resistance R
L
 in Fig. 3.369 for maximum power transfer and

calculate maximum power.

1 Ω 5 Ω

5 Ω

8 V

4 A

10 V

RL

Fig. 3.369

Solution

Step I Calculation of V
Th

 (Fig. 3.370)

 I I2 1I 4=I1II  ...(i)

Applying KVL to the outer path,

8 1 5 5 10 0

6 5 2

1 15 2

1 25

1 −5 2 =
−6 =

I 51 51 I

I55
 

...(ii)

Solving Eqs (i) and (ii),

 
I

I

1

2

2

2

= −
=

A

A
 ...(ii)

Writing the V
Th

 equation,

 

8 1 0

8 8 10

1

1

1 =
−8

I V1 −1

V I8 1= 8

ThVV

ThVV V( )2−2  

Step II Calculation of R
Th

 (Fig. 3.371)

 RThRR = 10 1 0= 91 . Ω  

A B2 Ω

2 Ω

2 Ω

RTh

Fig. 3.367

1 Ω 5 Ω

5 Ω

8 V

4 A

10 V

A

B

VTh

+

+
+

−

−
−

+
− I1 I2

Fig. 3.370

1 Ω 5 Ω

5 Ω

A

B

RTh

Fig. 3.371
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Step III Calculation of R
L

For maximum power transfer,

R RLR =RThRRR 0 91 Ω

Step IV Calculation of P
max

P
V

R
maPP x

( )

.
.= = =ThVV

ThRR
W

2 2( )

4 4 0 91
27 47

 Example 3.84  Find the value of the resistance R
L
 in Fig. 3.373 for maximum power transfer and

calculate the maximum power.

50 A

10 Ω 2 Ω

5 Ω 3 Ω RL

Fig. 3.373

Solution

Step I Calculation of V
Th

 (Fig. 3.374)

For Mesh 1,

I1 50=

Applying KVL to Mesh 2,

−

=
=

5 2− 3 0=
5 10 0=

2

25

3 3= 75

2 23

1 210

1 2

2

2

( )2 1

( )25

− I 32 − 3

101− 0

I I= 21 = 2

I

V I= 3

A

VThVV

Step II Calculation of R
Th

 (Fig. 3.375)

RThRR = ( ) .+ 3 2= 1 Ω

Step III Calculation of R
L

For maximum power transfer,

R RLR =RThRRR 2 1. Ω

Step IV Calculation of P
max

 (Fig. 3.376)

P
V

R
maPP x

( )

.
.= = =ThVV

ThRR
W

2 2( )

4 4 2 1
669 64

0.91 Ω

0.91 Ω10 V

A

B

Fig. 3.372

50 A

10 Ω 2 Ω

5 Ω 3 Ω VTh

++
+ −

− +

+
+ −

−

−

−

A

B

I1 I2

Fig. 3.374

10 Ω 2 Ω

5 Ω 3 Ω RTh

A

B

Fig. 3.375

2.1 Ω

2.1 Ω75 V

A

B

Fig. 3.376
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 Example 3.85  Find the value of resistance R
L
 in Fig. 3.377 for maximum power transfer and

calculate maximum power.

5 Ω

3 Ω

4 Ω

2 Ω

10 V

6 A
RL

Fig. 3.377

Solution

Step I Calculation of V
Th

 (Fig. 3.378)

Writing the current equation for the supermesh,

 I I2 1I 6=I1II  ...(i)

Applying KVL to the supermesh,

 
10 5 2 0

5 2 10

1 22

1 22

− 5 =
=2

I22

I2222
 ...(ii)

Solving Eqs (i) and (ii), 

 
I

I

1

2

0 29

5 71

= −
=

A

A
 

Writing the V
Th

 equation,

 V IThVV V2 1II =I 1 422 .

Step II Calculation of R
Th

 (Fig. 3.379)

 RThRR = + =( ) 3 4+ 8 4. 3 Ω

Step III Calculation of R
L

For maximum power transfer,

 R RLR =RThRRR 8 43 Ω  

Step IV Calculation of P
max

 (Fig. 3.380)

 P
V

R
maPP x

( . )

.
= = =ThVV

ThRR
W

2 2( )

4

42

4 8 43
3 8. 7

 Example 3.86  Find the value of resistance R
L 

in Fig. 3.381 for maximum power transfer and

calculate the maximum power.

5 Ω

3 Ω

4 Ω

2 Ω

10 V

6 A VTh

+
+

−

−

+

−

A

B

I1 I2

Fig. 3.378

5 Ω

3 Ω

4 Ω

2 Ω RTh

A

B

Fig. 3.379

8.43 Ω

8.43 Ω11.42 V

A

B

Fig. 3.380
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10 Ω

5 Ω120 V 6 ARL

Fig. 3.381

Solution

Step I Calculation of V
Th

 (Fig. 3.382)

Applying KVL to Mesh 1,

120 10 5 0

15 120

1 5

1 25

−10

=2

I 51 51

I I51 555

( )1 2

...(i)

Writing current equation for Mesh 2,

I2 6= −  ...(ii)

Solving Eqs (i) and (ii), 

I1 6= A

Writing the V
Th

 equation,

120 10 0

120 10 60

1−10 =
= −120

I V1 −1

V

ThVV

ThVV V( )6

Step II Calculation of R
Th

 (Fig. 3.383)

RThRR = 10 5 3= 33 . Ω

Step III Calculation of R
L

For maximum power transfer,

R RLR =RThRRR 3 33 Ω

Step IV Calculation of P
max

 (Fig. 3.384)

P
V

R
maPP x

( )

.
.= = =ThVV

ThRR
W

2 2( )

4 4 3 33
270 27

 Example 3.87  Find the value of resistance R
L
 in Fig. 3.385 for maximum power transfer and

calculate the maximum power.

10 Ω

25 Ω 6 Ω

20 V

3 A
RL

Fig. 3.385

10 Ω

5 Ω120 V 6 A

+
+ −

+ −

− − +

A

B

VTh
I1 I2

Fig. 3.382

5 Ω

10 Ω

A

B

RTh

Fig. 3.383

3.33 Ω

3.33 Ω60 V

A

B

Fig. 3.384
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Solution

Step I Calculation of V
Th

 (Fig. 3.386)

I1 3= …(i)

Applying KVL to Mesh 2,

− −
− =

25 10 6 0=
25 41 0

2 26

1 2

( )2 12 1− I 62 − 6

I I+ 411 + 41 …(ii)

Solving Eqs (i) and (ii),

I2 1= . A83

Writing the V
Th

 equation,

20 10 6 0

20 10 83 1 9 28

2 26+ 66

= − +10 83

V I10−
V

ThV

ThVV V( .11 ) (6 . )83 .

Step II Calculation of R
Th

 (Fig. 3.387)

RThRR = = Ω25 9= 76|| ( )+10 6 .

Step III Calculation of R
L

For maximum power transfer,

R RLR =R ΩThRRR 9 76

Step IV Calculation of P
max

 (Fig. 3.388)

P
V

R
maPP x

( . )

.
.= = =ThVV

ThRR
W

2 2( )

4

2. 8

4 9× 76
2 2. 1

 Example 3.88  Find the value of resistance R
L
 in Fig. 3.389 for maximum power transfer and

calculate maximum power.

5 V 1 A

1 Ω 5 Ω2 Ω

3 Ω10 Ω
RL

Fig. 3.389

Solution

Step I Calculation of V
Th

 (Fig. 3.390)

5 V 1 A

1 Ω 5 Ω2 Ω

3 Ω10 Ω VTh

+++ − −
+ +−

−+−
−

A

B

I1 I2 I3

Fig. 3.390

10 Ω

25 Ω 6 Ω

20 V

3 A

+ +

−

−

+

+

+ −

−

A
VTh

−B

I2I1

Fig. 3.386

10 Ω

25 Ω 6 Ω
A

RTh

B

Fig. 3.387

9.76 Ω

9.76 Ω9.28 V

A

B

Fig. 3.388
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Meshes 1 and 2 will form a supermesh.

Writing the current equation for the supermesh,

I I2 1I 1=I1II …(i)

Writing the voltage equation for the supermesh,

5 1 10 0

10 10 5

1 0

1 210 3

1 =
−2 =

I 101 101

I I101 +1010 I3

( )2 3− 3I I33
  …(ii)

Applying KVL to Mesh 3,

− − =
− =

10 2 3 0

10 1 0

3 33

2 35

( )3 23 − I3 33−
I I+152 3+15

  …(iii)

Solving Eqs (i), (ii) and (iii),

I

I

I

1

2

3

0 38

1 38

0 92

=
=
=

A

A

A

 

Writing the V
Th

 equation,

V IThVV V3 2I =I 763 .

Step II Calculation of R
Th

 (Fig. 3.391)

1 Ω 5 Ω2 Ω

3 Ω10 Ω

(a)

RTh

A

B

5 Ω2 Ω

3 Ω0.91 Ω

(b)

RTh

A

B

5 Ω

1.48 Ω

(c)

RTh

A

B

Fig. 3.391

RThRR = Ω6 8

Step III Calculation of R
L

For maximum power transfer,

R RLR =R ΩThRRR 6 48

Step IV Calculation of P
max

 (Fig. 3.392)

P
V

R
maPP x

( . )

.
= = =ThVV

ThRR
W

2 2( )

4

7. 6

4 6× 48
0 2. 9

6.48 Ω

6.48 Ω2.76 V

A

B

Fig. 3.392
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 Example 3.89  For the network shown in Fig. 3.393, fi nd the value of the resistance R
L
 for maxi-

mum power transfer and calculate the maximum power.

8 V 2 A

6 V

2 Ω

2 Ω

1 Ω

3 A

RL

Fig. 3.393

Solution

Step I Calculation of V
Th

 (Fig. 3.394)

8 V 2 A

6 V

2 Ω

2 Ω

1 Ω

3 A

VTh++ − + −
A

−

B

I1 I2

Fig. 3.394

I I2 1I 2=I1II …(i)

I2 3= − A …(ii)

Solving Eqs (i), and (ii),

I1 5= − A

Writing the V
Th

 equation,

8 2 1 6 0

8 2 6 15

1 212 =
= 8 −

I 11 11 V

V

ThV

ThVV V( )5−5 ( )33

Step II Calculation of R
Th

 (Fig. 3.395)

RThRR = Ω5

Step III Calculation of R
L

For maximum power transfer,

R RLR =R ΩThRRR 5

Step IV Calculation of P
max

 (Fig. 3.396)

P
V

R
maPP x

( )
.= = =ThVV

ThRR
W

2 2( )

4 4 5×
11 25

2 Ω

2 Ω

1 Ω RTh

A B

Fig. 3.395

5 Ω

5 Ω15 V

A

B

Fig. 3.396
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 Example 3.90  For the value of resistance R
L
 in Fig. 3.397 for maximum power transfer and calcu-

late the maximum power.

15 Ω

10 Ω 20 Ω

100 V

27 Ω

18 Ω

15 Ω5 Ω 27 Ω 9 Ω

RL

Fig. 3.397

Solution

Step I Calculation of V
Th

 (Fig. 3.398)

15 Ω

10 Ω 20 Ω

100 V

27 Ω

18 Ω

15 Ω5 Ω 27 Ω 9 Ω

VTh −

B

+

A

Fig. 3.398

By star-delta transformation (Fig. 3.399),

 I =
+ +

=
100

5 5+ 20 9 9+
2. A08  

Writing the V
Th

 equation,

 

100 5 9 0

100 14

100 14 08

70 88

− 5 =9

= −100

=

V I

V I100 14= −100

ThV

ThVV

V

( .2 )

.

 

9 Ω

9 Ω

9 Ω

5 Ω

20 Ω

100 V

5 Ω

5 Ω

A

I

B
VTh

+ + −

+ −

−

Fig. 3.399
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Step II Calculation of R
Th

 (Fig. 3.400)

9 Ω

9 Ω

9 Ω

5 Ω

5 Ω

5 Ω

5 Ω 20 Ω

(b)

(a)

9 Ω

9 Ω

9 Ω

20 Ω

5 Ω

5 Ω

A B
RTh

A B
RTh

5 Ω

14 Ω

34 Ω

(c)

9 ΩA B
RTh 5 Ω

9.92 Ω

(d)

9 ΩA B
RTh

Fig. 3.400

RThRR = Ω23 92.

Step III Calculation of R
L

For maximum power transfer,

R RLR =R ΩThRRR 23 92.

Step IV Calculation of P
max

 (Fig. 3.401)

P
V

R
maPP x

( . )
.= = =ThVV

ThRR
W

2 2( )

4

88

4 2× 3 9. 2
52 51

 Example 3.91  For the value of resistance R
L
 in Fig. 3.402 for maximum power transfer and calcu-

late the maximum power.

80 V 20 V

2 A
5 Ω

10 Ω 20 Ω

RL

Fig. 3.402

23.92 Ω

23.92 Ω70.88 V

A

B

Fig. 3.401
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Solution

Step I Calculation of V
Th

 (Fig. 3.403)

Applying KVL to Mesh 1,

80 5 10 20 20 0

35 30 60

1 0 0

1 230

−5

=2

1010 2020

I I301 303030

( )1 2 ( )1 2

  …(i)

Writing the current equation for Mesh 2,

I2 2= …(ii)

Solving Eqs (i) and (ii),

I1 3= . A43

Writing the V
Th

 equation,

V

V

ThVV

ThVV V

− =
=

20 20 0

20 43 2− 6

( )I II1 2I−
( .3 ) .+ =20 48

Step II Calculation of R
Th

 (Fig. 3.404)

RThRR = = Ω15 20 8 57||

Step III Calculation of R
L

For maximum power transfer,

R RLR =R ΩThRRR 8 57

Step IV Calculation of P
max

 (Fig. 3.405)

P
V

R
maPP x

( . )

.
.= = =ThVV

ThRR
W

2 2( )

4

6

4 8× 57
68 9

 Example 3.92  For the value of resistance R
L
 in Fig. 3.406 for maximum power transfer and calcu-

late the maximum power.

10 Ω 20 Ω

RL

40 Ω30 Ω

100 V

Fig. 3.406

80 V 20 V

2 A
5 Ω

10 Ω 20 Ω

+
++

+ −

− +10 Ω − +20 Ω
− −+

−

A

B

VTh
I1

I2

Fig. 3.403

5 Ω

10 Ω 20 Ω

A

B

RTh

Fig. 3.404

8.57 Ω

8.57 Ω48.6 V

A

B

Fig. 3.405
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Solution

Step I Calculation of V
Th

 (Fig. 3.407)

I

I

1

2

100

10 30
2 5

100

20 40
1 66

=
+

=

=
+

=

A

A

Writing the V
Th

 equation,

V I I

V I I
ThVV

ThVV V

I =
−I =

10 20 0

20 10 20 66 2 8= 2
1 2I− 20

2 1II−10 ( .1 ) (1− 0 . )5 .

Step II Calculation of R
Th

 (Fig. 3.408)

10 Ω 20 Ω

40 Ω30 Ω

A B
RTh

Fig. 3.408

Redrawing the network (Fig. 3.409),

RThRR = + = Ω( || ) ( || ) .0 83

10 Ω
20 Ω

40 Ω30 Ω

A B

Fig. 3.409

Step III Value of R
L

For maximum power transfer,

R RLR =R ΩThRRR 20 83.

Step IV Calculation of P
max

 (Fig. 3.410)

P
V

R
maPP x

( . )
= = =ThVV

ThRR
W

2 2( )

4

2.

4 2× 0 8. 3
0 8. 1

10 Ω 20 Ω

40 Ω30 Ω

100 V
+

+ +

++

− −

− −

−

A B
VTh

I1 I2

Fig. 3.407

20.83 Ω

20.83 Ω8.2 V

A

B

Fig. 3.410
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 Example 3.93  For the value of resistance R
L
 in Fig. 3.411 for maximum power transfer and calcu-

late the maximum power.

6 Ω

2 Ω

RL

4 Ω3 Ω

72 V

Fig. 3.411

Solution

Step I Calculation of V
Th

 (Fig. 3.412)

Applying KVL to Mesh 1,

 
72 6 3 0

9 3 72

1 3

1 23

− 6 =
=2

33

I3333

( )1 22−I1 I
 
…(i)

Applying KVL to Mesh 2,

 
−

− =
3 2− 4 0=

3 9 0

2 24

1 29

( )2 1− I 42 − 4

I9+ 9+
 
…(ii)

Solving Eqs (i) and (ii),

 
I

I

1

2

9

3

=
=

A

A
 

Writing the V
Th

 equation,

 
V I I

V I I

ThVV

ThVV V

=
= + =

6 2II 0

6 2I +I 6 2 60

1 2I2−

1 2I2+ ( )9 ( )3
 

Step II Calculation of R
Th

 (Fig. 3.413)

6 Ω

2 Ω

4 Ω

4 Ω

2 Ω

3 Ω6 Ω

3 Ω

A

B A

B

RTh

RTh

Fig. 3.413

 RThRR = = Ω[( || ) ]+ ||6 3|| 4 2=] ||  

6 Ω

2 Ω

4 Ω3 Ω

72 V

+ +

+ −
+

+

−

−

− −

A

B

VTh

I1

I2

Fig. 3.412
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Step III Calculation of R
L

For maximum power transfer,

R RLR =R ΩThRRR 2  

Step IV Calculation of P
max

 (Fig. 3.414)

P
V

R
maPP x

( )
= = =ThVV

ThRR
W

2 2( )

4 4 2×
450  

 Example 3.94  For the network shown in Fig. 3.415 fi nd the value of the resistance R
L
 for maximum 

power transfer and calculate maximum power.

10 Ω

5 Ω 10 Ω

2 Ω

25 A 30 V10 A RL

Fig. 3.415

Solution

Step I Calculation of V
Th

 (Fig. 3.416)

10 Ω

5 Ω 10 Ω

2 Ω

25 A 30 V10 A

+

−

A

B

VTh

Fig. 3.416

By source transformation, the current source of 25 A and the 5 Ω resistor is converted into an equivalent 

voltage source of 125 V and a series resistor of 5 Ω. Also the voltage source of 30 V is connected across the 

10 Ω resistor. Hence, the 10 Ω resistor becomes redundant (Fig. 3.417).

10 Ω 2 Ω

5 Ω

10 Ω30 V

+

−

A

B

VTh

125 V

10 A

Fig. 3.417

2 Ω

2 Ω60 V

A

B

Fig. 3.414
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Applying KCL at the node,

V V

V

ThVV ThVV

ThVV V

− +
−

=

=

12

15
10

30

2
0

58 81.

Step II Calculation of R
Th

 (Fig. 3.418)

RThRR = Ω15 2 1= 76|| .

Step III Value of R
L

For maximum power transfer

R RLR =R ΩThRRR 1 76

Step IV Calculation of P
max

 (Fig. 3.420)

P
V

R
maPP x

( . )

.
.= = =ThVV

ThRR
W

2 2( )

4

81

4 1× 76
491 28

1.76 Ω58.81 V

A

B

1.76 Ω

Fig. 3.420

 Example 3.95  For the network shown in Fig. 3.421, fi nd the value of the resistance R
L
 for maxi-

mum power transfer and calculate maximum power.

2 Ω

10 Ω
5 Ω

2 Ω

10 V

4 A 8 V

RL

4 Ω

12 V 6
2 Ω V

Fig. 3.421

Solution

Step I Calculation of V
Th

 (Fig. 3.422)

2 Ω

4 Ω

10 Ω
5 Ω

2 Ω

8 V

4 A

12 V 6
2 Ω V

10 V

+

+

+

−

−

−
A

B

VTh

I

Fig. 3.422

10 Ω 2 Ω

5 Ω 10 Ω
A

B

RTh

Fig. 3.418

2 Ω15 Ω

A

B

RTh

Fig. 3.419
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Applying KVL to the outer path,

10 2 12 5 8 0

10

7
1

− 2 −

= − = −

I I12 55

I . A43
 

Writing the V
Th

 equation,

8 5 6 0

8 6 5 8 6 5 43 85

5

+ 6 43

I V6+
V I8 6 5= 8 + 5

ThV

ThVV V( .1−1 ) .6  

Step II Calculation of R
Th

 (Fig. 3.423)

RThRR = +
= Ω

( || )|| 2

3 4. 3

2 Ω

10 Ω 5 Ω

2 Ω
A

B

RTh

4 Ω

Fig. 3.423

Step III Value of R
L

For maximum power transfer,

R RLR =R ΩThRRR 3 43

Step IV Calculation of P
max

 (Fig. 3.424)

P
V

R
maPP x

( . )

.
= = =ThVV

ThRR
W

2 2( )

4

8. 5

4 3× 43
3 4. 2

EXAMPLES WITH DEPENDENT SOURCES

 Example 3.96  For the network shown in Fig. 3.425, fi nd the value of R
L
 for maximum power trans-

fer. Also, calculate maximum power.

RL

20 Ω

10 I
+
−

40 Ω

50 V

I

Fig. 3.425

3.43 Ω6.85 V

A

B

3.43 Ω

Fig. 3.424
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Solution

Step I Calculation of V
Th

 (Fig. 3.426)

Applying KVL to the mesh,

10 20 40 50 0

1

I I I20 40

I

−I II20 40 =
= −  A

Writing the V
Th

 equation,

V I

V

V

ThVV

ThVV

ThVV V

−I =
−

=

40 50 0

40 5− 0 0=
10

( )−1

Step II Calculation of I
N
 (Fig. 3.427)

From Fig. 3.427,

I I2   …(i)

Applying KVL to Mesh 1,

10 20 0I I20 =I20 1  

10 20 02I I202 =I20 1   …(ii)

Applying KVL to Mesh 2,

− − =40 50 02I

I2 1 25= − .25 A   …(iii)

Solving Eqs (i), (ii) and (iii),

I

I I IN

1  A

A

= −
I = − +

0 625

0 625 1 25 0= 6251 2I−
.

. .+625 .

Step III Calculation of R
N
 

R
V

IN
ThRR

ThVV
= = =

10

0 625
16

.
Ω

Step IV Calculation of R
L

For maximum power transfer,

R RLR =RThRRR 16 Ω
Step V Calculation of P

max 
(Fig. 3.428)

P
V

R
maPP x

( )
= = =ThVV

ThRR
 W

4 4 1× 6
1 5. 6

2

 Example 3.97  For the network shown in Fig. 3.429, calculate the maximum power that may be 

dissipated in the load resistor R
L
.

6 Ω4 Ω

3 Ω

10 A

2Ix

Ix

RL

−  +

Fig. 3.429

VTh

20 Ω

10 I
+
−

40 Ω
A

B
50 V

+

−

I

Fig. 3.426

20 Ω

10I
+
−

40 Ω
A

B
50 V

I

IN
I1 I2

Fig. 3.427

16 Ω10 V

A

B

16 Ω

Fig. 3.428
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Solution

Step I Calculation of V
Th

 (Fig. 3.430)

From Fig. 3.430,

I Ix 2 …(i)

For Mesh 1,

I1 10= …(ii)

Applying KVL to Mesh 2,

−
− + =
4 2+ 6 0=
4 4 2 6 0

2

2 1 2 26

( )2 1− I − 6

I4+2 14+ I6− 6−
x

4 8 01 28I88 =2I88 …(iii)

Solving Eqs (ii) and (iii),

I

I

1

2

10

5

=
=

A

 A

Writing the V
Th

 equation,

6 0 0

6 6 30

2

2

I V02

V I6

0 =
6

ThVV

ThVV  V( )5

Step II Calculation of I
N
 (Fig. 3.431)

From Fig. 3.431,

I I Ix −I2 3I−   …(i)

For Mesh 1,

I1 10=   …(ii)

Applying KVL to Mesh 2,

−
− +

4 2+ 6 0=
4 4 2 6 6 0=

2+ 6

2 + 2 26− 3

( )2 ( )−2 3

( )2 3

− I 6− 6

I4+2 4+ − I + 6

x

4 8 4 02 34I81 +2I8   …(iii)

Applying KVL to Mesh 3,

− =6 3− 03( )3 2− I3  

6 9 02 39I9 39 =3I9 39   …(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

I IN

1 A

A

A

A

=

=

=

=I

10

7 5

5

5

2

3

3

6 Ω4 Ω

3 Ω

10 A

2Ix

Ix

−  +

I1 I2

+
+

−

A

−
B

VTh

Fig. 3.430

6 Ω4 Ω

3 Ω

10 A

2Ix

Ix

−  +

I1 I2 I3

A

B

IN

Fig. 3.431
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Step III Calculation of R
Th

 

R
V

IN
ThRR

ThVV
= = =

30

5
6 Ω

Step IV Calculation of R
L

For maximum power transfer,

R RLR =RThRRR 6 Ω

Step V Calculation of P
max

P
V

R
maPP x

( )
.= = =ThVV

ThRR
 W

2 2( )

4 4 1× 6
37 5

 Example 3.98  For the network shown in Fig. 3.433, fi nd the value of R
L
 for maximum power

transfer. Also, fi nd maximum power.

1 Ω

1 Ω

1 A

2 V

Vx

RL

+
−

− +
V

2Vx

Fig. 3.433

Solution

Step I Calculation of V
Th

 (Fig. 3.434)

From Fig. 3.434,

V I IxVV = −1 …(i)

For Mesh 1,

I = −1 …(ii)

VxVV = 1 V

Writing the V
Th

 equation,

2 1 2 0

2 2 0

5

V I1 V

V

V

xV +I1

− + −2 =
=

ThV

ThVV

ThVV V

( )1 ( )1−

Step II Calculation of I
N
 (Fig. 3.435)

From Fig. 3.435,

V I IxVV =1 1 1II= −   …(i)

Meshes 1 and 2 will form a supermesh.

Writing the current equation for the supermesh,

I I2 1=I1   …(ii)

Applying KVL to the outer path of the supermesh,

2 1 2 0

2 2 0

1

1

V I1 1xV +1I1 1

+ =2( )1

 

3 01   …(iii)

6 Ω30 V

A

B

6 Ω

Fig. 3.432

1 Ω

1 Ω

1 A

2 V

Vx

+
−

− +
V

2Vx

I

+

−

A

B

VTh

Fig. 3.434

1 Ω

1 Ω

1 A

2 V

Vx

+
−

− +
V

2Vx

A

B

I1 I2

IN

Fig. 3.435



3.5 Maximum Power Transfer Theorem 3.111

Solving Eqs (ii) and (iii),

I

I

I IN

1  A

 A

A

=
=

=I

0 67

1 67

1 67

2

2

 

Step III Calculation of R
Th

 

R
V

IN
ThRR

ThVV
= = =

5

1 67
3 Ω

Step IV Calculation of R
L

For maximum power transfer,

R RLR =RThRRR 3 Ω

Step V Calculation of P
max

 ( Fig. 3.436)

P
V

R
maPP x

( )
= = =ThVV

ThRR
 W

2 2( )

4 4 3×
2 0. 8

 Example 3.99  What will be the value of R
L
 in Fig. 3.437 to get maximum power delivered to it? 

What is the value of this power?

4 Ω4 Ω3 A

0.5 V

RL

−  + +

−

V

Fig. 3.437

Solution

Step I Calculation of V
Th

 (Fig. 3.438)

By source transformation,

From Fig. 3.438,

 V IThVV 4

Applying KVL to the mesh,

 

12 4 0 5 4 0

12 0 0

8

− 4 =4

− − =

=

I V0 5 I

V V0 5+ V

V

ThV

ThV ThVV ThV

ThVV V

Step II Calculation of I
N
 (Fig. 3.439)

If two terminals A and B are shorted, the 4 Ω resistor gets 

shorted.

 = 0

3 Ω5 V

A

B

3 Ω

Fig. 3.436

4 Ω4 Ω3 A

0.5 VTh

VTh

−  +
+

−

A

B

Fig. 3.438

4 Ω
4 Ω

12 V

VTh

+

−

A

B

I

0.5 VTh

− +

Fig. 3.439
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Dependent source 0.5 V
 
depends on the controlling variable

 
V

 
. When

 
V = 0, the dependent source vanishes, 

ie. 0.5 V = 0 as shown in Fig. 3.441.

 IN = =
12

4
3 A

4 Ω
4 Ω

12 V

+

−

A

B

0.5 V

−  +

IN V
12 V

A

B

4 Ω

IN

Fig. 3.440 Fig. 3.441

Step III Calculation of R
Th

R
V

IN
ThRR

ThVV
= = = Ω

8

3
2 67

Step IV Calculation of R
L

For maximum power transfer,

 R RLR =R ΩThRRR 2 67  

Step V Calculation of P
max

 (Fig. 3.442)

 

P
V

R
maPP x

( )

.
= = =ThVV

ThRR
W

2 2( )

4 4 2× 67
6

 

 3.6    RECIPROCITY THEOREM

It states that ‘in a linear, bilateral, active, single source network, the ratio of excitation to response remains 

same when the positions of excitation and response are interchanged.’

In other words, it may be stated as ‘if a single voltage 

source V
a
 in the branch ‘a’ produces a current I

b
 in the branch 

‘b’ then if the voltage source V
a
 is removed and inserted in 

the branch ‘b’, it will produce a current I
b
 in branch ‘a’’.

Explanation Consider a network shown in Fig. 3.443.

When the voltage source V is applied at the port 1, it 

produces a current I at the port 2. If the positions of the 

excitation (source) and response are interchanged, i.e., if 

the voltage source is applied at the port 2 then it produces a 

current I at the port 1.

The limitation of this theorem is that it is applicable only 

to a single-source network. This theorem is not applicable in 

the network which has a dependent source. This is applicable 

only in linear and bilateral networks. In the reciprocity 

theorem, position of any passive element (R, L, C) do not change. Only the excitation and response are 

interchanged.

2.67 Ω8 V

A

B

2.67 Ω

IL

Fig. 3.442

IV N t k+
−

Fig. 3.443 Network

Network V
+
−I

Fig. 3.444  Network when excitation 

and response are 

interchanged 
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Steps to be followed in Reciprocity Theorem

1. Identify the branches between which reciprocity is to be established.

2. Find the current in the branch when excitation and response are not interchanged.

3. Find the current in the branch when excitation and response are interchanged.

 Example 3.100  Calculate current I and verify the reciprocity theorem for the network shown in 

Fig. 3.445.

20 V

5 Ω 4 Ω

10 Ω 6 Ω

I

Fig. 3.445

Solution

Case I  Calculation of current I when excitation and 

response are not interchanged (Fig. 3.446)

Applying KVL to Mesh 1,

20 5 10 01 10− 5 1010( )1 2  

15 10 201 210I I101 10 =2I1010   …(i)

Applying KVL to Mesh 2,

− − =10 4 6 02 26( )2 12 1− I66−  

− =10 20 01 220I + I201 + 20   …(ii)

Solving. Eqs (i) and (ii),
I

I

I I

1

2

2

2

1

1

=
=

=I2

 A

A

A

 

Case II  Calculation of current I when excitation and 

response are interchanged (Fig. 3.447).

Applying KVL to Mesh 1,

−5 1 0=01 0101− 0( )−1 2  

15 10 01 210I I101 10 =2I1010   …(i)

Applying KVL to Mesh 2,

− − =10 4 20 6 02 20 6( )2 12 1− I20 62 2− 0 6−  

− = −10 20 201 20I + I201 + 20   …(ii)

Solving Eqs (i) and (ii),

I

I

I I

1

2

1

1

1 5

1

= −
= −

=

 A

A

A

Since the current I remains the same in both the cases, reciprocity theorem is verifi ed.

20 V

5 Ω 4 Ω

10 Ω 6 Ω

I

I1 I2

Fig. 3.446

5 Ω 4 Ω

10 Ω

20 V

6 Ω

I

I1 I2

Fig. 3.447
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 Example 3.101  Find the current I and verify reciprocity theorem for the network shown in Fig. 3.446.

5 V

2 Ω

4 Ω

2 Ω

3 Ω 3 Ω

I

4 Ω

Fig. 3.448

Solution

Case I  Calculation of the current I when excitation and 

response are not interchanged (Fig. 3.449)

Applying KVL to Mesh 1,

5 2 3 4 01 32 =I 31 31 44( )1 2 ( )1 33−I1 I3I3

9 3 4 51 23 3I33 −23  …(i)

Applying KVL to Mesh 2,

−3 2− 3 0=2 23( )2 1− I 32 − 3

− =3 8 01 28I8+ 8+ …(ii)

Applying KVL to Mesh 3,

− =4 4− 03( )3 1− I3

− =4 8 01 38I8+ 38+ …(iii)

Solving Eqs (i), (ii) and (iii),

I

I

I

I I

1

2

3

3

0 85

0 32

0 43

0 43

=
=
=

=I3

A

A

A

 A

Case II  Calculation of current I when excitation and 

response are interchanged (Fig. 3.450).

Applying KVL to Mesh 1,

−2 3 4 0=1 3 433− 4− 4( )−1 2I1 I2 ( )−1 3

9 3 4 01 23 3I33 −23   …(i)

Applying KVL to Mesh 2,

−3 2− 3 0=2 23( )2 1− I 32 − 3  

− =3 8 01 28I8+ 8+   …(ii)

5 V

2 Ω

4 Ω

2 Ω

3 Ω 3 Ω

I

I1 I2

I3

4 Ω

Fig. 3.449

5 V

2 Ω

4 Ω

2 Ω

3 Ω 3 Ω
I

I1 I2

I3

4 Ω

Fig. 3.450
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Applying KVL to Mesh 3,

− −4 5+ 4 0=3( )3 1−

− =4 8 51 38I8+ 38+   …(iii)

Solving Eqs (i), (ii) and (iii),

I

I

I

I I

1

2

3

1

0 43

0 16

0 84

0 43

=

=

=

=I1

A

A

A

A

Since the current I remains the same in both the cases, reciprocity theorem is verifi ed.

 Example 3.102  Find the voltage V and verify reciprocity theorem for the network shown in

Fig. 3.451.

4 Ω 2 Ω

5 Ω

8 Ω6 Ω

10 A
V

+−

Fig. 3.451

Solution

Case I  Calculation of the voltage V when excitation and 

response are not interchanged (Fig. 3.451)

For Mesh 1,

I1 10=   …(i)

Applying KVL to Mesh 2,

−4 2− 5 0=2 5( )2 1 ( )−2 3− I 52 − 5  

− =4 11 5− 01 21 31+ 11 1+ 1 I3   …(ii)

Applying KVL to Mesh 3,

− −6 5− 8 0=3( )3 1 ( )3 2− 3 −  

− + =6 5 19 01 25 3I55− I   …(iii)

Solving Eqs (i), (ii) and (iii),

I

I

I

V

1

2

3

10

5 76

4 67

5 76 4 5 45

=
=
=

5 76 =

A

A

 A

 V( )2 3I I2 3II2 ( .55 . )67

 

4 Ω 2 Ω

5 Ω

8 Ω6 Ω

10 A
V

+−

I1
I3

I2

Fig. 3.452



3.116 Network Analysis and Synthesis

Case II Calculation of voltage V when excitation and response are interchanged (Fig. 3.453).

4 Ω 2 Ω

5 Ω

8 Ω6 Ω 10 A

V

+

−

Fig. 3.453

By source transformation (Fig. 3.454),

Applying KVL to Mesh 1,

− − −4 2 50 5 0=1 1I21 12− ( )1 2−
11 5 501 25I 51 555  …(i)

Applying KVL to Mesh 2,

−6 5 50 8 0=2 5 250 855− + 50 8+ −50 8( )−2 1I I

−5 19 5= 01 2191+ 91+ 9   …(ii)

Solving Eqs (i) and (ii),

I

I

1

2

3 8

1 63

= −
=

A

A

From Fig. 3.454,

V I I

V

V

=

+

=

4 6I +I 0

4 8 1 0=

5 42

1 2I6+

( .3− ) (6+ . )63

.42 V

 

Since the voltage V is same in both the cases, the reciprocity theorem is verifi ed.

3.7    MILLMAN’S THEOREM

It states that ‘if there are n voltage sources V V V1 2V VV V nVV,2V ,…  with internal resistances R R R1 2R R nR,2R ,…  respectively 

connected in parallel then these voltage sources can be replaced by a single voltage source V
m
 and a single 

series resistance R
m
, ’(Fig. 3.455).

Rn

Vn

A

B

R1 R2

V1 V2

⇒

A

B

Rm

Vm

Fig. 3.455 Millman’s network

where  V
V G V G V G

G G G
mVV

n nV GV

n

=
+ +V G +

+G +
1 1V GV G 2 2V GV GV

1 2G GG G

…

…
 

4 Ω 2 Ω

5 Ω 50 V

8 Ω6 Ω

V

+

−

I1

I2

Fig. 3.454
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Exercises

Superposition Theorem

Find the current through the 10 3.1 Ω resistor in 

Fig. 3.490.

100 V10 A

10 Ω 30 Ω

5 Ω 20 Ω

Fig. 3.490

[ ]0.37 A

Find the current through the 8 3.2 Ω resistor in 

Fig. 3.491.

5 A 25 A

8 Ω

12 Ω 30 Ω

Fig. 3.491

[ ]16 2.  2 A

Find the potential across the 3 3.3 Ω resistor in 

Fig. 3.492.

9 Ω

15 A

5 A

4 V

7 Ω
2 Ω

5 Ω

3 Ω

Fig. 3.492

[ ]3 3.  3 V

Calculate the current through the 10 3.4 Ω 

resistor in Fig. 3.493.

+
−

−
+25 V 12 V

10 Ω

4 Ω

2 Ω 3 Ω

2 Ω

7 Ω

Fig. 3.493

[ ]1. A62

Find the current through the 13.5 Ω resistor in 

Fig. 3.494.

1 V

2 Ω

3 Ω1 A

2 Ω

2 Ω
1 Ω

Fig. 3.494

[ ]0. A41

Find the current through the 4 3.6 Ω resistor in 

Fig. 3.495.

4 Ω

2 Ω
2 Ω

2 Ω2 Ω

2 Ω

5 A

10 V

6 V

Fig. 3.495

[ ]1. A33



  Exercises 3.129

Find the current 3.7 I
x
 in Fig. 3.496.

5 Ω 20 Ω

20 Ω2 A
24 V 36 V

Ix

Fig. 3.496

[ ]−

Find the voltage 3.8 V
x
 in Fig. 3.497.

2 Ω 4 Ω

50 V 100 V

+ −

0.1Vx

Vx

Fig. 3.497

[ ]−

Determine the voltages 3.9 V
1
 and V

2
 in Fig. 

3.498.

4 Ω 4 Ω 4 Ω

20 V10 A 0.5V2
0.25I1

+
−

V2 I1V1

Fig. 3.498

[ ]6 V,12 V

Find the voltage 3.10 V
x
 in Fig. 3.499.

20 Ω 30 Ω

10 Ω

4 A

60 V

Vx

+

−

I1

0.4I1

Fig. 3.499

[ ]7 5. V5

Thevenin’s Theorem

Find the current through the 5 3.11 Ω resistor in 

Fig. 3.500.

100 V

50 V 50 V10 Ω 2 Ω

5 Ω 2 Ω 3 Ω

Fig. 3.500

[ ]3. A87

Find the current through the 6 3.12 Ω resistor in 

Fig. 3.501.

3 A 2 A

4 V 4 Ω

3 Ω 5 Ω 6 Ω

Fig. 3.501

[ ]1. A26

Find the current through the 6 3.13 Ω resistor in 

Fig. 3.502.

4 A 3 A

10 V 2 Ω

10 Ω 5 Ω 6 Ω

Fig. 3.502

[ ]2. A04

Find the current through the 2 3.14 Ω resistor 

connected between terminals A and B in Fig. 

3.503.

10 V

12 V

8 V4 A

6 V2 Ω 2 Ω

5 Ω4 Ω
10 Ω 2 Ω

A

B

Fig. 3.503

[ ]1. A26
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Find the current through the 5 3.15 Ω resistor in 

Fig. 3.504.

5 Ω

6 Ω20 ΩΩ
7 Ω

10 Ω

4 Ω

40 V

20 V

20 V100 V

50 V

30 V

Fig. 3.504

[ ]4. A67

Find the current through the 20 3.16 Ω resistor in 

Fig. 3.505.

15 Ω 40 Ω

7 Ω 20 Ω

100 V

36 Ω

21 Ω

15 Ω8 Ω 36 Ω 15 Ω

Fig. 3.505

[ ]1. A54

Calculate the current through the 10 3.17 Ω 

resistor in Fig. 3.506.

+
−

−
+25 V 12 V

10 Ω

4 Ω

2 Ω 3 Ω

2 Ω

7 Ω

Fig. 3.506

[ ]1. A62

Determine Thevenin’s equivalent network 3.18 

for fi gures 3.507 to 3.510 shown below.

(i)

4 Ω
6 Ω

10 V

4 A

Vx

+

−

4Vx

+  −

Fig. 3.507

[ ]− Ω
(ii)

100 Ω

100 Ω
10 V

9I1

I1

Vx

Fig. 3.508

[ ]9 09 9 09. ,09 . Ω

(iii)

4 Ω 4 Ω3 A Vx

+

−

0.5Vx

− +

Fig. 3.509

[ ]8 2 66V, . Ω

(iv)

3 Ω

2 Ω

5 Ω

10 AVx

Vx

+

− 4

Fig. 3.510

[ ]150 20V, Ω



  Exercises 3.131

Find the current 3.19 I
x
 in Fig. 3.511.

10 V4 A

5 Ω 2 Ω

5 Ω+
−

10Ix

Ix

1 A

Fig. 3.511

[ ]4 A

Find the current in the 24 3.20 Ω resistor in Fig. 

3.512.

48 V

1000 Ω

13 Ω 24 Ω+
−3Vx 10Ix

Ix

Vx

+

−

Fig. 3.512

[ ]0. A225

Norton’s Theorem

Find the current through the 10 3.21 Ω resistor in 

Fig. 3.513.

5 V

2 V

20 V

6 Ω 5 Ω10 Ω

4 Ω 15 Ω

Fig. 3.513

[ ]0. A68

Find the current through the 20 3.22 Ω resistor in 

Fig. 3.514.

2 A10 V

10 Ω 20 Ω

4 Ω 8 Ω

5 Ω

Fig. 3.514

[ ]0. A61

Find the current through the 2 3.23 Ω resistor in 

Fig. 3.515.

10 V

20 V

5 A

10 Ω

5 Ω 3 Ω 2 Ω

Fig. 3.515

[ ]5 A

Find the current through the 5 3.24 Ω resistor in 

Fig. 3.516. 

2 A
6 A

10 V

6 Ω

5 Ω 10 Ω

4 Ω2 Ω

6 Ω

3 Ω

3 Ω

Fig. 3.516

[ ]4. A13

Find Norton’s equivalent circuit for the 3.25 

portion of network shown in Fig. 3.517 to the 

left of ab. Hence obtain the current in the 10 

Ω resistor.

7 V
8 A

12 V

4 Ω

10 Ω
9 Ω4 Ω

2 Ω

6 Ω

a

b

Fig. 3.517

[ ]0. A053

Find Norton’s equivalent network and hence 3.26 

fi nd the current in the 10 Ω resistor in Fig. 

3.518.
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3 Ω2 Ω

10 Ω3 Ω 2I1

2 V

I1

Fig. 3.518

[ ]0. A25

Find Norton’s equivalent network In Fig. 3.27 

3.519.

2 Ω2 Ω

+

−
20 Ω8 Ω 0.1 V112 V 8I2V1

I2

+
−

Fig. 3.519

[ ]0. A533 , 31 Ω

Maximum Power Transfer Theorem

Find the value of the resistance 3.28 R
L
 in Fig. 3.520 

for maximum power transfer and calculate the 

maximum power.

1 Ω

3 Ω 1 Ω

2 Ω RL
6 V 2 A

Fig. 3.520

[ ]1 75 1 29. ,75 .Ω

Find the value of the resistance 3.29 R
L
 in Fig. 3.521 

for maximum power transfer and calculate the 

maximum power.

3 Ω 6 Ω

3 Ω

9 Ω

RL

110 V

Fig. 3.521

[ ]2 36 940. ,36 Ω

Find the value of the resistance 3.30 R
L
 in Fig. 3.522 

for maximum power transfer and calculate the 

maximum power. 

2 Ω

4 Ω
2 Ω

2 V/1 Ω

RL

8 A

2 A

4 V/2 Ω

Fig. 3.522

[ ]2 18 29 35. ,18 Ω

Find the value of the resistance 3.31 R
L
 in Fig. 3.523 

for maximum power transfer and calculate the 

maximum power. 

2 Ω

2 Ω

3 Ω

2 Ω
RL

6 A

3 V

Fig. 3.523

[ ]3 2 52Ω 2

Find the value of the resistance 3.32 R
L
 in Fig. 3.524 

for maximum power transfer and calculate the 

maximum power. 

2 Ω

5 Ω 10 Ω

10 Ω

RL10 A25 A 30 A

Fig. 3.524

[ ]1 76 490 187. ,76 .Ω
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Objective-Type Questions

The value of the resistance 3.1 R connected across 

the terminals A and B in Fig. 3.525, which 

will absorb the maximum power is

3 kΩ

4 kΩ

4 kΩ

6 kΩ

B

R

AV

Fig.  3.525

(a) 4 kΩ (b) 4.11 kΩ
(c) 8 kΩ (d) 9 k Ω

Superposition theorem is not applicable to 3.2 

networks containing

(a) nonlinear elements

(b) dependent voltage source

(c) dependent current source

(d) transformers

The value of 3.3 R required for maximum power 

transfer in the network shown in Fig. 3.526 is

3 A20 Ω

4 Ω5 Ω

R25 V

Fig. 3.526

(a) 2 Ω (b) 4 Ω (c) 8 Ω (d) 16 Ω
In the network of Fig. 3.527, the maximum 3.4 

power is delivered to R
L
 if its value is

V

20 Ω0.5I1

40 Ω
RL

I1

Fig. 3.527

(a) 16 Ω (b) 
40

3
Ω

(c) 60 Ω (d) 20 Ω

The maximum power that can be transferred 3.5 

to the load R
L
 from the voltage source in Fig. 

3.528 is

RL10 V

100 Ω

Fig. 3.528

(a) 1 W (b) 10 W

(c) 0.25 W (d) 0.5 W

For the circuit shown in Fig. 3.529, Thevenin’s 3.6 

voltage and Thevenin’s equivalent resistance 

at terminals a-b is

5 Ω0.5I1 10 V

5 Ω

+
−

I1
1 A

a

b

Fig. 3.529

(a) 5 V and 2 Ω (b) 7.5 V and 2.5 Ω
(c) 4 V and 2 Ω (d) 3 V and 2.5 Ω

The value of 3.7 R
L
 in Fig. 3.530 for maximum 

power transfer is

9 Ω62 V 16 Ω A RL

+
−

6 Ω 6 Ω

9 Ω

Fig. 3.530

(a) 3 Ω (b) 1.125 Ω
(c) 4.1785 Ω (d) none of these



6
Network Theorems 

(Application to ac 

Circuits)

 6.1   INTRODUCTION

We have discussed the network theorems with reference to resistive load and dc sources. Now, all the 

theorems will be discussed when a network consists of ac sources, resistors, inductors and capacitors. All the 

theorems are also valid for ac sources.

 6.2    MESH ANALYSIS

Mesh analysis is useful if a network has a large number of voltage sources. In this method, currents are 

assigned in each mesh. We can write mesh equations by Kirchhoff’s voltage law in terms of unknown mesh 

currents,

 Example 6.1  Find mesh currents I
1
 and I

2
 in the network of Fig. 6.1.

100∠45° V

j4 Ω

j10 Ω −j− 10 Ω

I1 I2

3 Ω

+

−

Fig. 6.1

Solution Applying KVL to Mesh 1,

      100∠45° − (3 + j4)I
1
 − j10(I

1
 − I

2
) = 0

    (3 + j14)I
1
 − j10I

2
 = 100 ∠45° …(i)

Applying KVL to Mesh 2,

   −j10 (I
2
 − I

1
) + j10 (I

2
) = 0

  j10I
1 
= 0 …(ii)

  I
1 
= 0 

Substituting I
1
 in Eq. (i),

 

− = ∠ °

=
∠ °

−
= ∠ °

j

j

10 100 45

100 5

10
10 135

2

2

I

I A
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 Example 6.2  Find mesh current I
1
, I

2
 and I

3
 in the network of Fig. 6.2.

10∠30° V

j5 Ω−j− 2 Ω

−j− 2 ΩI1 I2 I3

5 Ω

3 Ω 5 Ω
2 Ω+

−

Fig. 6.2

Solution Applying KVL to Mesh 1,

10 ∠30° − (5 − j2) I
1
 − 3 (I

1
 − I

2
) = 0

  (8 − j2) I
1
 − 3I

2
 =  10∠30°  … (i)

Applying KVL to Mesh 2,

             −3 (I
2
 − I

1
) − j5I

2
 − 5 (I

2
 − I

3
) = 0

                −3I
1
 + (8 + j5) I

2
 − 5I

3 
= 0 … (ii)

Applying KVL to Mesh 3,

            –5 (I
3
 – I

2
) – (2 – j2) I

3
 = 0

           –5I
2
 + (7 – j2) I

3 
= 0 … (iii)

Writing Eqs (i), (ii) and (iii),

8 2 3 0

3 8 5 5

0 5 7 2

10 30

0

0

1

2

3

−2

− +3 8

5 7

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥ =
∠ °30⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤j

j

j

I

I

I ⎦⎦

⎥
⎤⎤

⎥
⎦⎦⎦⎦

⎥⎥

By Cramer’s rule,

I1

10 30 3 0

0 8 5 5

0 5 7 2

8 2 3 0

3 8 5 5

0 5 7 2

1 43 38 7=

∠ °30 −
+ 5

5 7

−2

− +3 8

5 7

= 1 43

j

j

j

j

j

. .3 3843 °° A

 

         

I2

8 2 10 30 0

3 0 5

0 0 7 2

8 2 3 0

3 8 5 5

0 5 7 2

0 693 2 2=

∠2 10 °
− −3 0

−2

− +3 8

5 7

= ∠0 693 −

j

j

j

j

j

. .693 2∠693 °° A

 

I3

8 2 3 10 30

3 8 5 0

0 5 0

8 2 3 0

3 8 5 5

0 5 7 2

0 4 6 13=

−2 ∠ °30

− +3 8

−2

− +3 8

5 7

= ∠0 476

j

j

j

j

j

. .476 13∠476 88° A  



6.2 Mesh Analysis 6.3

 Example 6.3  In the network of Fig. 6.3, fi nd the value of  V
2
  so that the current through (2 + j3) ohm 

impedance is zero.

30∠0° V

j3 Ω

j5 Ω 6 Ω

I1 I2 I3

V2

5 Ω 2 Ω 4 Ω

+

−

+

−

Fig. 6.3

Solution Applying KVL to Mesh 1,

     30∠0° − 5I
1
 − j5 (I

1
 − I

2
) = 0

                  (5 + j5) I
1
 − j5I

2
 = 30 ∠0° …(i)

Applying KVL to Mesh 2,

       −j5 (I
2
 − I

1
) − (2 + j3) I

2
 − 6 (I

2
 − I

3
) = 0

          −j5I
1
 + (8 + j8) I

2
 − 6I

3
 = 0 …(ii)

Applying KVL to Mesh 3,

    −6(I
3
 − I

2
) − 4I

3
 − V

2 
= 0

        −6I
2
 + 10I

3 
= −V

2
 …(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

           

5 5 5 0

5 8 8 6

0 6 10

30 0

0
1

2

3 2

−
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥ =
∠ °0⎡

⎣⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
j j5 −5

j j5 8 +5 8

I

I

V2I3 ⎦⎦⎦ ⎣⎣⎣

⎤⎤

⎦

⎥
⎤⎤⎤⎤

⎥
⎦⎦

⎥⎥

 

By Cramer’s rule,

  I
V

2
2V

5 5 30 0 0

5 0 6

0 1V2VV 0

5 5 5 0

5 8 8 6

0 6 10

0=

+ ∠5 30 °
− −5 0

−

=

j

j

j j5 −5

j j5 8 +5 8

 

  

( ) ( ) ( ) ( )

.

) ( ) ( 0)

1500

30 30
35 36 452 =

+
= ∠.35 36 °

j j) ( ) ( ) () ( ) () ( ( ) (

j

j
V2  V

 Example 6.4  Find the value of the current I
3
 in the network shown in Fig. 6.4.

20∠0° V

10∠30° V

j10 Ω

−j− 4 Ω

−j− 4 Ω

I1 I2

I3

4 Ω

10 Ω

20 Ω

4 Ω

20 Ω

+
+ −

−

Fig. 6.4
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Solution Applying KVL to Mesh 1,

20∠0° − (4 − j4) I
1
 − j10 (I

1
 − I

2
) − 10 (I

1
 − I

3
) = 0

 (14 + j6) I
1
 − j10I

2
 − 10I

3 
= 20 ∠0° … (i)

Applying KVL to Mesh 2,

    −j10 (I
2
 − I

1
) − 10∠30° − 20I

2
 − (4 − j4) (I

2
 − I

3
) = 0

    −j10I
1
 + (24 + j6) I

2
 − (4 − j4) I

3
 = −10∠30° … (ii)

Applying KVL to Mesh 3,

   −10(I
3
 − I

1
) − (4 − j4) (I

3
 − I

2
) − 20I

3 
= 0

               −10I
1
 − (4 − j4) I

2
 + (34 − j4) I

3
 = 0 … (iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

14 6 10 10

10 24 6

10 34 4

1

2

3

+
−
− −10

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡j j66

j j10 24 +10 24

j34 −34

( )4 4−4 j

( )4 4j44

I

I

I⎣⎣

⎢
⎡⎡

⎢
⎣⎣⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥ =
∠ °

− ∠ °
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
20 0

10 30

0

By Cramer’s rule,

I3

14 6 10 20 0

10 24 6 10 30

10 0

14 6 10 10

1

=

+ ∠ °0

− 10 °
− −10

+ 6

−

j j66

j j10 24 +10 24

j

j

( )4 4j

0 200 4 6

10 34 4

0 44 14

− −10

= 0 44 − °14

j6 −6

j34 −34

( )4 4j4

( )4 4j44

. 14∠44 A

 Example 6.5  Find the voltage V
AB

 in the network of Fig. 6.5.

10∠0° V

−j− 50 Ω

j200 Ω

I2

I1

100 Ω

4 Ω100 Ω

1 Ω

96 Ω

+ −

A

B

Fig. 6.5

Solution Applying KVL to Mesh 1,

− 96 I
1
 − (100 + 4 + j200) (I

1
 − I

2
) + 10 ∠0° = 0

 (200 + j200) I
1
 − (104 + j200) I

2
 = 10 ∠0° …(i)

Applying KVL to Mesh 2,

− (1 − j50 − 100) I
2
 − (100 + 4 + j200) (I

2
 − I

1
) = 0

 − (104 + j200) I
1
 + (205 + j150) I

2 
= 0 …(ii)

Writing Eqs (i) and (ii) in matrix form,

            
200 200

205 150

101

2

+
−

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠j200 −200

j205 +
( )104 200j104 +

( )104 200+104 j200

I

I

00

0

°⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

 



6.2 Mesh Analysis 6.5

By Cramer’s rule,

          I1

10

0 205 150

200

∠ °0 −
+

+

200+

200

200+104

j

− 104 +
150+

0 10

j

A  

I2

200 0

0

200

+ ∠200 10

−
+

−
−

200+ j

200j104 +
200+104 j 150

26 34

+

°

j

 A  

     
= ∠ −26 051

− 2

°34 ( )j+4 200 ( .0 ∠−− 045 °
 V

 Example 6.6  For the network shown in Fig. 6.6, fi nd the voltage across the capacitor.

5∠0° V
j3 Ω

j2 Ω

j1 Ω

j2 Ω
I1

I3

I2
2 Ω1 Ω 3 Ω

1 Ω1 Ω

+

Fig. 6.6

Solution Applying KVL to Mesh 1,

00 − )2  

0∠5 ° …(i)

Applying KVL to Mesh 2,

=2 −  

        =2 03I− +   …(ii)

Applying KVL to Mesh 3,

+ 2 0=+) − +  

− ++ + ( 0=)   …(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

  2 5

2 2 2

51

2

3− +

⎡ ⎡ ⎤2−
2

j j

3j+1

3

I

I

I

⎤
0

0
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By Cramer’s rule,

I2

2 0 2

2−

5 5

j

j0 2 +
2−

2

1

1

3j+1

( 2

130 51

+

°

j

A

        

I3

2 5

2 0

2 0

− ∠ °0

−

−

j

j

2−
2

3

3j+

1 2

0 9

912 0

A

V − ∠130 = 3 0°51 V

 

 Example 6.7  Find the voltage across the 2 W  resistor in the network of Fig. 6.7.

+
2∠30° A 8∠45° V

I1 I2

3 Ω

2 Ω

j1 Ω

Ω

Fig. 6.7

Solution For Mesh 1,

I1 0= 2 °   …(i)

Applying KVL to Mesh 2,

− ∠− − 45 0−) ( )

     = 45   …(ii)

Substituting I
1
 in Eq. (i),

             

8

2 1
2

∠ °45

=I 9 65

19 65 8 32 0 3 72 2 ∠ − ° 84 37

A

VV

 



6.2 Mesh Analysis 6.7

 Example 6.8  Find the current through 3 W resistor in the network of Fig. 6.8.

+

−
10∠0° V

1∠0° A

I1 I2 I3

3 Ω

1 Ω

5 Ω

j2 Ω

j1 Ω

Fig. 6.8

Solution Applying KVL to Mesh 1,

10 0 2 3 1 01 13∠ °0 2 1 =j I 31 31 ( )1 2I I11  

          ( ) 10 01 2) = ∠10 °I I1 −1   …(i)

Meshes 2 and 3 will form a supermesh.

Writing current equation for the supermesh,

                 I I3 2I 1 0=I2I ∠ °0   …(ii)

Applying KVL to the outer path of the supermesh,

       −1 5− 1 0=3 31( )2 1− I 13 − 1j

                   I I I1 2I 3 0−2I =I3)1( )5 11   …(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

4 2 1 0

0 1 1

1 1

10 0

1 0

0

1

2

3

−2

−1

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥ =
∠ °0

∠ °0

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
j

( )5 1j

I

I

I

⎤⎤

⎦

⎥
⎤⎤⎤⎤

⎥
⎦⎦

⎥⎥

By Cramer’s rule,

    
I1

10 0 1 0

1 0 1 1

0 1

4 2 1 0

0 1 1

1 1

2 11 28=

∠ °0

∠ °0 −
−1

−2

−1

= ∠2 11
( )5 1

( )5 1

.
j

..

.

01

2 1. 1 28 0. 13 1

°

=1 °

A

AI I3 =Ω

 Example 6.9  Find the currents I
1
 and I

2
 in the network of Fig. 6.9.

−

+
+

−
9∠0° V

I1 I2

Vx

6 Ω

3 Ω−j− 3 Ω

2Vx

− +

Fig. 6.9
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Solution From Fig. 6.9,

   VxV j= − 3( )1 21 −   …(i)

Applying KVL to Mesh 1,

9 0 6 3 01 3∠ °0 − 6 =33j ( )1 22−I I

( ) 3 9 023 ∠9 °j j) 1) I 33j1 +1   …(ii)

Applying KVL to Mesh 2,

  
j

j j

x3 2 3 0

3 3 2 3 0

2

1j3j 1 2 2

( )2 1

[ (j3j )]I3j I I1

− 3

+1I3j3j (3j I1 − 3

Vx
 

  j9 02( )j( )3 9j9j3 9j9   …(iii)

Writing Eqs (ii) and (iii) in matrix form,

6 3 3

9 3 9

9 0

0
1

2

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠ °0⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j j3

j j9 3 −
I

I

By Cramer’s rule,

I

I

1

2

9 0 3

0 3 9

6 3 3

9 3 9

1 3 2 49

6 3 9 0

9 0

6 3 3

=

∠ °0

−
= ∠1 3 °

=

3 9 °

j

j

j j3

j j9 3 −

j

j

j j3

j

. .3 2∠3 A

9 399 9

1 24 15 95

−

= 1 24 − °15 95

j

. .15∠24 A

 

 Example 6.10  Find the voltage across the 4 W resistor in the network of Fig. 6.10.

6∠30° V

I1 I2

4 Ω2 Ω

j2 Ω

−j− 1 Ω

+
−

+−

Ix

2Ix

Fig. 6.10

Solution From Fig. 6.10,

I Ix 1  …(i)

Applying KVL to Mesh 1,

   
− ∠ ° =
− ∠ °
2 6 1 2 0

2 6 1 1 2 0=
1 6 30

1 6 30 2 12

∠ ° +6+ 1∠ +6+ I2−
∠ ° +6+ 1∠ +6+ I 22 − 2

j

j j−11

x( )−1 2
 

       ( ) 1 6 3021 ∠6 °j j) 1) I 11j1 +1   …(ii)



6.3 Node Analysis 6.9

Applying KVL to Mesh 2,

0

4 0

=

0=   …(iii)

Writing Eqs (ii) and (iii) in matrix form,

1

0
1

2

⎡ ⎤ = 30⎡ ⎤1

− 4

I

I

By Cramer’s rule,

I2

0

2 1 0

1

0

1 6 °

= 4
1

−

V

4

(

A

74 2. 2 1∠ − ∠− ° V

6.3    NODE ANALYSIS

Node analysis uses Kirchhoff’s current law for fi nding currents and voltages in a network. For ac networks, 

Kirchhoff’s current law states that the phasor sum of currents meeting at a point is equal to zero.

Example 6.11  In the network shown in Fig. 6.11, determine V
a 
and V

b
.

10∠0° V

3 Ωj6 Ω j5 Ω

j4 Ω j4 Ωj6 Ω
+

−

Va Vb

Fig. 6.11

Solution Applying KCL at Node a,

j j j

+ =

=V
∠ °

3
0

1 1

6

1

3

1

3

10

6

1 67 90= °   …(i)

Applying KCL at Node b,

  

V V

j j

+ + =

−

1
0

1

3

1

3

1 1

1
0

 

  − 0b−   …(ii)



6.10 Network Analysis and Synthesis

Adding Eqs (i) and (ii),

  
− ∠− °

=
°

−
= °

j

j

b

b

1 25 1=b 67 90

1 67 9∠− 0

1 25
1 34 0∠

.1b.25

.

Vbbb

Vb V

 

Substituting V
b
 in Eq. (i),

   
0 33 0 33 34 0 67 90

1 73 17

0 33
5 24 75

.0.33 ( .1(1 ) .1

. .73 75
. .4 75

V

V

aVV

aVV

340 33.0 (1 °) °

=
∠ °75 1775

= 5 2424 1711 ° V

 

 Example 6.12  For the network shown in Fig. 6.12, fi nd the voltages V
1
 and V

2
.

50∠0° V 50∠90° V

5 Ω 4 Ω 2 Ω

−j− 2 Ωj2 Ω
+

−

+

−

V1 V2

Fig. 6.12

Applying KCL at Node 1,

  

V V V V

V V

1 1V VV V 1 2V VV

1 2V VV

0 0

5 2 4
0

1

5

1

2

1

4

1

4
10 0

45

∠0 °
+ +1 =

+ +
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=V2V ∠ °0

−

j

j

j( .0 000 0 25 10 01 2. )5 V 0 251 20 250 250 25 ∠ °0

  

…(i)

Applying KCL at Node 2,

  

V V V V

V V

2 1V VV 2 2V V

1 2V V

4 2

50 90

2
0

1

4

1

4

1

2

1

2
25 90

0

+ +
− ∠50 °

=

− VVV
−

⎛
⎝⎝⎝

⎞
⎠⎠⎠

= ∠25 °

−

j

j

.. ( . . )25 0 2) 5 902)1 (V ( 75 0 ) 2. )1 ( .7. 5 0 )( 75( 7. 5 25 °j

  

…(ii)

Writing Eqs (i) and (ii) in matrix form,

0 45 0 5 0 25

0 25 0 75 0 5

10 0

25 90
1

2

. .45 0 .

. .25 0

0 5

− +0 25 0 75.25 0

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠ °0

∠ °90

⎡
⎣

j

j

V1

V2
⎢⎢
⎡⎡⎡⎡
⎣⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

 

By Cramer’s rule,

V1VV

10 0 0 25

25 0 75 0 5

0 45 0 5 0 25

0 25 0 75 0 5

24 7=

∠ °0

0 5

− +0 25 0 75

=

.

.0

.0.45 .

. .25 025 0

.
j j25 0 75.75

j

j

∠ °∠∠7 . 5 V

V2V

0 45 0 5 10 0

0 25 25 90

0 45 0 5 0 25

0 25 0 75 0 5

3=

0 5 10 °
−0 25 25 °

0 5

− +0 25 0 75

=

.00.45

.0.45 .

. .25 025 0

j

j

j

4 344 4 8. .34 5∠ °52 8252 V



6.3 Node Analysis 6.11

 Example 6.13   Find the voltage V
AB

 in the network of Fig. 6.13.

I = 10∠0° A

2 Ω 2

1

3 Ω

j5 Ω

j4 Ω

j10 ΩA

B

I

Fig. 6.13

Solution Applying KCL at Node 1,

10 0
2 3 4

1

2

1

3 4

1

2
10 0

62 0

1 2 1

1 2
2

∠ °0 = +
+

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=2 ∠ °0

V V1 2 V1

V V
1

1 22

j

j

j( .0 . )16 V VVV1 2V VVVV 0 10 0=V2V ∠ °0

  

…(i)

Applying KCL at Node 2,

V V V V

V V

2 1V VV 2 2V V

1 2V V

2 5 10
0

1

2

1

2

1 1

10
0

0 0 5

+ +2 =

− VVV
⎛
⎝⎝⎝

⎞
⎠⎠⎠

=

−0 −

j j5

j j5

. (V1V5 +V1VV5 jj0 02. )3 V2 =

  

…(ii)

Writing Eqs (i) and (ii) in matrix form, 

0 62 0 16 0 5

0 5 0 5 0 3

10 0

0
1

2

. .62 0

. .5 0

−0 16

− −0 5 0 5

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠ °0⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j

j

V1

V2

By Cramer’s rule,

     V1VV

10 0 0 5

0 0 5 0 3

0 62 0 16 0 5

0 5 0 5 0 3

21 8 56 42=

∠ °0

−0 16

− −0 5 0 5

= 21 8

.

.0.5

.0.62

. .5 0

. .8 568
j

j

j

°° V  

V2VV

0 62 0 16 10 0

0 5 0

0 62 0 16 0 5

0 5 0 5 0 3

18 7 87=

∠0 16 10 °
−

−0 16

− −0 5 0 5

= 18 7

.00.62

.0.62

. .5 0

. .7 877

j

j

j

4244

18 7 42

°

=2 ∠ °87 42

V

VV V2= 2AV . .7 8787

 

V
V

BV
j j

= =
∠ °

°1VV

3 4j+
21 8∠

3 4j+
1= 7 45 9∠ 3 32( )j4

. .8 5∠ 6
( )j4 . .45 9∠ 3  V

V V VABV A BV VVAV = ∠ ∠ °( . . )° ( . . )° .∠.7 8∠ 7. −)° ( 4. 5 9∠ 3. 2=)° 23 34 1  ° V



6.12 Network Analysis and Synthesis

 Example 6.14  Find the node voltages V
1
 and V

2
 in the network of Fig. 6.14.

2∠30° A

V1 V2

2V22 Ω

−j− 1 Ω

j2 Ω

Fig. 6.14

Solution Applying KCL at Node 1,

V V V
V

V V

1 1V VV V 2VV
2VV

1 2V VV V

2 1
2

1

2

1

1
2

1

1
0

+
−

=

+
−

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝

⎞
⎠⎠⎠

=

j

j
1

j1⎠⎠⎠ ⎝⎝⎝

 

( . ) ( )5. 1 2) ( 1 0) 2)+ j j) ((j1)1) 2))2( 1)1)1)j2((2( +   …(i)

Applying KCL at Node 2,
V V V

V V

2 1V VV V 2VV

1 2V VV V

1 2
2 30

1

1

1

1

1

2
2 30

−
+ =2 ∠ °30

⎛
⎝

⎞
⎠⎠⎠

= 2 °

j j1

j j
1

1 −⎝⎝⎝ j

                 − ∠ °j j1 0 5 2= 302j 0j+ 5 2j 0j+ 5   …(ii)

Writing Eqs (i) and (ii) in matrix form,

0 2 1

1 0 5

0

2 30
1

2

. (5 1 )

.−
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

=
∠ °30

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j j2(11 +
j j1

V1

V2

 

By Cramer’s rule,

          

V

V

1VV

2VV

0

2 30 0 5

0 2 1

1 0 5

2 46 130 62

0

=
∠ °30

−

= ∠2 46 °

=

( )2 1+2

.

. (5 1+ )

.

. .6 130∠46
j

j j2 +(1 −1

j j1

V

..

. ( )

.

. .

5 1 0

1 2 30

0. 2( 1

1 0 5

1 23 167 49
− ∠1 2 °

−

∠= .1 2. 3 °

j

j

j j(2( +
j j1

V

 

 Example 6.15  In the network of Fig 6.15, fi nd the voltage V
2
 which results in zero current through 

4 W  resistor.

50∠0° V

5 Ω 4 Ω 2 Ω

−j− 2 Ωj2 Ω
+

−

+

−

V1 V3

V2

Fig. 6.15
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Solution Applying KCL at Node 1,

5 2 4
0

1

5

1

2

1

4

1

4
10

+ +

+ + = ∠ °0
j

       4. 5 0 0= ∠10 °  …(i)

Applying KCL at Node 3,

V

V

2

4 2 2
0

1

4

1

4

1 1
0 5

+ +

− j

5= 0 V   …(ii)

Writing Eqs (i) and (ii) in matrix form,

5 0 25 101.

− +
⎡ ⎤ ∠ °0

j

V
 

By Cramer’s rule,

V1

10 25

0 75 0 5

5 0 25

0 5

10

0

− +

.

j

.

7. 0 125

. 5

5

.

°

0 5 10

V

V
V

5 0 5 0 25

0 5

0 5

0 55 1.

5 2

− +.

0

j

5

4
04

°

ΩI

10 7

5 1 5

5

0 55

0 2

°
.0 125 20.

15 95

0 25

+ 0

2− V

= 10V

5 5

5
2

)

V = = 26 V

 Example 6.16  Find the voltage across the capacitor in the network of Fig. 6.16.

12∠30 V

2∠60 A

V1 V2

j2 Ωj1 Ω 2 Ω

+

Fig. 6.16
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Solution Nodes 1 and 2 will form a supernode.

Writing the voltage equation for the supernode,

V V1 2V VV 12 30=V2VV ∠ °30   …(i)

Applying KCL to the supernode,

V V V1 2V VV V 2VV

1 2 2
2 60

j j1 2
+ +2 = 2 °

( ) ( . ) ∠ °j j) () ()) 0 2) = 602)j(((+ 5 0j+ )) 2. ).j( .(+ 0j+ ))   …(ii)

Writing Eqs (i) and (ii) in matrix form,

1 1

1 0 5 0 5

12 30

2 60
1

2−
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠ °30

∠ °60

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦j j1 0 51 0 5 .0j55

V1

V2

By Cramer’s rule,

V

V V

2VV

2V

1 12 30

1 2 60

1 1

1 0 5 0 5

18 157 42

18 5

=

∠ °30

− ∠1 2 °

−

= ∠18 55 °

=V2VV

j

j j1 0j1 0 51 0 5

cVV

.0j55

. .55 157∠55

.

V

55 57∠ °157 42.42 V

 

6.4    SUPERPOSITION THEOREM

The superposition theorem can be used to analyse an ac network containing more than one source. The 

superposition theorem states that in a network containing more than one voltage source or current source, 

the total current or voltage in any branch of the network is the phasor sum of currents or voltages produced 

in that branch by each source acting separately. As each source is considered, all of the other sources are 

replaced by their internal impedances. This theorem is valid only for linear systems.

 Example 6.17  Find the current through the 3 + j4 ohm impedance.

3 Ω

50∠90° V 50∠0° V

5 Ω j5 Ω

j4 Ω

−

+−

+

Fig. 6.17

Solution 

Step I When the 50 ∠90° V source is acting alone (Fig. 6.18)

ZT
j

= + = °5
3 9j+

6 35 2∠ 3 2
( )j3 4j+ ( )j5

. .35 2∠ 3 Ω

IT =
∠ °
∠ °

= °
50 90

6 35∠ 2
7 87 6∠ 6 8

. .35 2∠ 3
. .87 6∠ 6  A

3 Ω

50∠90° V

5 Ω j5 Ω

j4 Ω

I′

−

+

Fig. 6.18



6.4 Superposition Theorem 6.15

By current division rule,

′ =
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= ° ↓I ( . . )° . ( )↓8. 7 6∠ 6.
5

3 9+
4 15 8∠∠ 5 3.

j

j

Step II When the 50∠0° V source is acting alone (Fig. 6.19)

ZT j
j

= +j = °5
5

8 4j+
6 74 6∠ 8 2

( )j+3 4
. .74 6∠ 8 Ω

  IT =
∠ °
∠ °

= − °
50 0

6 74∠ 2
7 42 6∠− 8 2

. .74 6∠ 8
. .42 6∠ 8 A  

By current division rule,

   
I″ =

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= − ° ↑ °( . . )° . ( )↑ . . (4. 2 6∠− 8.
5

8 4+
4 15 9∠−∠ 4 7. 7 4° ( ) 3

j
A  ∠ °(↑ . ∠4=( )↑ 15 A ↓↓)

 

Step III By superposition theorem,

        I = I′ + I′′ = 4.15 ∠85.3° + 4.15 ∠85.3° = 8.31 ∠85.3°A (↓)

 Example 6.18  Determine the voltage across the (2 + j5) ohm impedance for the network shown in 

Fig.6.20.

50∠0° V 20∠30° A

j4 Ω

j5 Ω

−j− 3 Ω

2 Ω

−

+

Fig. 6.20

Solution

Step I When the 50∠0° V source is acting alone (Fig. 6.21)

I =
∠ °

= − °
50 0

2 4+ 5
5 42 7∠ − 7 47

j j+4
. .42 7∠ 7 A

Voltage cross (2 + j5) Ω impedance

     V′ =  (2 + j5) (5.42 ∠− 77.47°) = 29.16 ∠− 9.28° V

Step II When the 20∠30° A source is acting alone (Fig. 6.22)

By current division rule,

I =
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= °( )∠ °
4

2 9+
8 6. 8 4∠∠ 2 5. 3

j

j
A

Voltage across (2 + j5) Ω impedance

   V′′ =  (2 + j5) (8.68 ∠42.53°) = 46.69 ∠110.72° V

3 Ω

50∠0° V

5 Ω j5 Ω

j4 Ω

I″

−

+

Fig. 6.19

50∠0° V

j4 Ω

j5 ΩI

−j− 3 Ω

2 Ω

−

+

Fig. 6.21

20∠30° A

j4 Ω

j5 Ω

−j− 3 Ω

I

2 Ω

Fig. 6.22
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Step III By superposition theorem,

 V = V′ + V′′ = 29.16 ∠−9.28° + 46.69 ∠110.72° = 40.85 ∠72.53° V

 Example 6.19   Determine the voltage V
AB

  for the network shown in Fig. 6.23.

50∠0° V

4∠0° A

j5 Ω

−j− 2 Ω

5 Ω

A

B

+

−

Fig. 6.23

Solution

Step I When the 50∠0° V source is acting alone (Fig. 6.24)

50∠0° V

j5 Ω

−j− 2 Ω

5 Ω

A

B

+

−

Fig. 6.24

VABV
′ = ∠ °50 0  ° V  

Step II When the 4∠0° A source is acting alone (Fig. 6.25)

4∠0° A

j5 Ω

−j− 2 Ω

5 Ω

A

B

Fig. 6.25

VABV
″ = 0

Step III By superposition theorem,

       V V VABV ABV ABV+VABV = ° ∠ °′ ″ ° +50 0∠∠ 0 0= 5= 0 V°  



6.4 Superposition Theorem 6.17

 Example 6.20  Find the current I in the network shown in Fig. 6.26.

13 ∠25° V 20 ∠−30° V3 ∠50° A

j3 Ω −j− 5 Ω4 Ω 2 ΩI

+

−

+

−

Fig. 6.26

Solution   Step I When the 13∠25° V source is acting alone (Fig. 6.27)

13 ∠25° V

j3 Ω −j− 5 Ω4 Ω 2 Ω

+

− I′

Fig. 6.27

I′ =
∠ °

= ∠ °
13 25

6 2−
2 0 43 43

j
. .∠057 43 ( )→  Step II When the 20∠−30° V source is acting alone (Fig. 6.28)

20 ∠−30° V

j3 Ω −j− 5 Ω4 Ω 2 Ω

+

−
I″

 

Fig. 6.28

′′ =
∠ − °

= − ° ∠ °I
20 30

6 2−
3 16 1∠ − 1 5 3=7° 16 3

 V
A A( )→

j
. .6 1∠ 1 ( )←( )← . .∠16 68

 

Step III When the 3∠50° A source is acting alone (Fig. 6.29)

3 ∠50° A

j3 Ω −j− 5 Ω4 Ω 2 ΩI′′′

Fig. 6.29



6.18 Network Analysis and Synthesis

By current division rule,

 
′′′ = ° × = ° = ∠ − °I 3 5∠ 0

2 5−
6 2−

2 56 0∠ 23 2 56 179 77
j

j
. .56 0∠ ( )← . .∠56 179 A( )→

 

Step IV By superposition theorem,

   I = I′ + I′′ + I′′′   = 2.057 ∠43.13° + 3.16 ∠168.43° + 2.56 ∠−179.77° A  = 4.62 ∠153.99° A (→)

 Example 6.21  Find the current through the j3 W  reactance in the network of Fig 6.30.

10∠60° V5∠30° V j5 Ω

j3 Ω

−j− 5 Ω

−j− 2 Ω
+

−

+

−

Fig. 6.30

Solution 

Step I When the 5∠30° V source is acting alone (Fig. 6.31)

5∠30° V j5 Ω

j3 Ω

−j− 5 Ω

−j− 2 Ω
+

−

Fig. 6.31

When a short circuit is placed across j15 Ω reactance, it gets shorted as shown in Fig 6.32.

5∠30° V

j3 Ω

−j− 5 Ω

−j− 2 Ω
+

−

I′

Fig. 6.32

I′ =
∠ °

−
= °

5 3∠ 0

5 3
2

j j5 +
. ∠ °5 120 ( )←
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Step II When the 10∠60° V source is acting alone (Fig. 6.33)

10∠60° Vj5 Ω

j3 Ω

−j− 5 Ω

−j− 2 Ω
+

−

Fig. 6.33

When a short circuit is placed across the −j2 Ω reactance, it gets shorted as shown in Fig. 6.34

10∠60° Vj5 Ω

j3 Ω

−j− 5 Ω

+

−

I′′

Fig. 6.34

I″ =
∠ °

−
= ∠ ° → ∠ − ° ←

10 60

5 3
5 150 30

j j5 +
A ( ) 5= A ( )

 

Step III By superposition theorem,

I I I= +I = ∠ ° + ° °′ ″I+ 2 5 120 5 3∠− 0 3° = 1 6∠−. .∠ +5 120 5 3∠ 0 3 . °21 ( )←  

 Example 6.22  Find the current I
0
 in the network of Fig. 6.35.

10∠30° A

2∠0° A

j4 Ω

6 Ω

8 Ω

−j− 2 Ω

+

−

I0

Fig. 6.35

Solution

Step I When the 10∠30° V source is acting alone (Fig. 6.36)

Z

I

T

T

j

j j
= + = ° Ω

=
∠ °
∠ °

=

6
4

4 8 2
8 64 2∠ 4 12

10 30

8 64∠
1 16

( )j8 2
. .64 2∠ 4

. .64 2∠
. ∠ °∠∠5. A°88

10∠30° Vj4 Ω

6 Ω

8 Ω

−j− 2 Ω

+

−

I0
′

IT

Fig. 6.36
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By current division rule,

I0 1 16 5 88
4

8 2 4
0 56 81 84′ = 1 16 ° × = 0 56 ° ↓. .6 516 . .56 8156

j

j j2 +2
( )  

Step II When the 2∠0° A source is acting alone (Fig. 6.37)

2∠0° A

j4 Ω

6 Ω

8 Ω

−j− 2 Ω

I0
′′

Fig. 6.37

The network can be redrawn as shown in Fig. 6.38.

2∠0° Aj4 Ω8 Ω 6 Ω

(a)

−j− 2 Ω

I0
′′

(b)

2∠0° A8 Ω

(1.85 + j2.77) Ω

−j− 2 Ω

I0
′′

 

Fig. 6.38

By current division rule,

I0 2 0
1 85 2 77

1 85 2 77 8 2
0 6 51 83″ = 2 ° × = ∠0 67 ° ↓

.2.85

.85
. .67 5167

j

j j2 77 8+2 77.22
( )

Step III By superposition theorem,

I I I0 0 0 0 56 81 84 0 67 83 1 19 65 46+I0I = 0 56 ° ∠ °51 83 = 1 19 ° ↓′ ″I+ . .56 8156 . .67 5∠51 . .9 6519 ( )

 Example 6.23  Find the current through the j5 W branch for the network shown in Fig. 6.39.

j5 Ω −j− 4 Ω3 Ω

10 ∠0° V 15 ∠90° V 20 ∠0° V

+

−

+

−

+

−

Fig. 6.39
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Solution

Step I When the 10∠0° V source is acting alone (Fig. 6.40)

j5 Ω −j− 4 Ω3 Ω

10 ∠0° V

+

−

I′

Fig. 6.40

Z

I

T j
j

= +j = ° Ω

=
∠ °

∠ °
=

5
3

3 4j−
4 04 6∠ 1 66

10 0

4 04∠ 66
2 48 6∠ − 1

( )j4j−
. .04 6∠ 1

. .04 6∠ 1
. .8 6∠ 1′ 6666 ° →A ( )

 

Step II When the 15∠90° V source is acting alone (Fig. 6.41)

Z

I

T

T

j j
= + = ∠− ° Ω

=
∠ °

∠ − °
=

3
5 4j

20 22 81 47

15 90

20 22 81 47
0

( )j5 ( )j4j
. .∠ 81

. .∠22 81
.. .74 171 47∠ °.171 47 A

By current division rule,

  

    

I″ == ∠ ×
−

−
= ← ∠= →0 171 47

4

4 5
8∠ 53 171. .∠7 171 . .96 8∠ . (°47 )

j

j j4 +
A ( ) 2 96

Step III When the 20 ∠0° V source is acting along (Fig. 6.42)

j5 Ω −j− 4 Ω3 Ω

20 ∠0° V

+

−

I′′′ IT

Fig. 6.42

Z

I

T

T

j
j

= − + = ∠− ° Ω

=
∠ °

∠ °
=

4
3

3 5j+
3 4 5∠− 0 51

20 0

3 47 5∠− 0 51
5 6 5∠ 0

( )j5j
. .7 5∠ 0

. .47 5∠ 0
.76 5∠ 0.51.. ° A

By current division rule,

I″′ = ° × = − ° ← ∠= →5 6 5∠ 0 51
3

3 5+
2 96 8∠− 53 171. .76 5∠ 0 . .96 8∠ . (°47 )

j
A ( ) 2 96

 

j5 Ω −j− 4 Ω3 Ω

15 ∠90° V
+

−

I′′

IT

Fig. 6.41
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Step IV By superposition theorem,

I I I I= +I + =I ° ∠ ° + ∠ ° =′ ″I+ ″′ 2 48 6∠− 1 66 2° + 96 7 2 96 171 47 4 8. .48 6∠ 1 . .∠96 7 . .∠96 171 . 686 1∠− 6466 41. ° A

 Example 6.24  Find the voltage drop across the capacitor for the network shown in Fig. 6.43.

2 Ω

4 Ω

2 Ω

10 ∠0° V

20 ∠45° V

−j− 2 Ω

+ + −

−

j5 Ω

Fig. 6.43

Solution

Step I  When the 10∠0° V source is acting alone 

(Fig. 6.44)

   

Z

I

T

T

j j
= +

= ∠ − ° Ω

=
∠ °

∠ °
= ∠

4
2 5j+ j 2 2j

7 5∠ − 91

10 0

7 5∠ − 91
1 43

( )j2 5j+ j ( )j2 2j

.

.
. ∠3 5 955 1° A

By current division rule,

I′ = ∠
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= ° →( . . )°4. 3 5∠
2 5+

2 5+ 2 2
1 5. 4 3∠∠ 7 2. 4

j

j j+5 2 −
A ( )

Step II When the 20∠45° V source is acting alone (Fig. 6.45)

2 Ω

4 Ω

2 Ω
20 ∠45° V

−j− 2 Ω

+ −

j5 Ω

I′′

Fig. 6.45

Z

I

T
j

= +
+

= − ° Ω

=
∠ °

°
=

( )j
( )j+

. .

. .

j−
4(

4 2+ 5
4 48 8∠ −∠ 84

20 5

4 4. 8 8∠ −∠ 84
′′ 4 444 6 8. .46 53∠ °53 8453 ←A ( ) A4 46 53 84. .46 53− ∠4 46.46 ° ( )→

2 Ω

4 Ω

2 Ω

10 ∠0° V

−j− 2 Ω

+

−

j5 Ω

I′

Fig. 6.44
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Step III By superposition theorem,

         I I I

V I

= +I = ∠ ° = ∠ − °′ ″I+ 1 54 3∠ 7 24 4− 46 53 84 3 01 117 78. .54 3∠ 7 . .∠46 53 . .∠01 117

( )2 (

A

cVV j jI = −) ( 2 322 01 117 78 02 5) ( . .01 117 ) .6 .∠ − °) ∠ °152 22. V

 

 Example 6.25  Find the node voltage V
2
  in the network of Fig. 6.46.

5 ∠0° V

5 ∠30° V

10 ∠0° A 5 Ω 2 Ω j10 Ω

V1 V2

Fig. 6.46

Solution

Step I When the 10 0∠ °0  A  source is acting alone (Fig. 6.47)

5 ∠30° V

10 ∠0° A 5 Ω 2 Ω j10 Ω

V1
′ V2

′

Fig. 6.47

Applying KCL at Node 1,

V V V

V V

1 1V VV V 2VV

1 2V VV V

5 5 30
10 0

1

5

1

5 30

11

5 30
10 0

′ ′ ′

′ ′1

+
−

∠ °30
= ∠10 °

+
∠ °30

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠ °30

= ∠10 °
 

( . ) ( . )3. 7 0 ) ( 1 0 10 02) =2 ∠ °0j j. ) (0 ) 1 (0 ) 2. )0. V)( 17 0 )0 2)0j( 171 ( .( 17′ ′   …(i)

Applying KCL at Node 2,

V V V V

V V

2 1V VV V 2 2V VV V

1VV

5 30 2 10
0

1

5 30

1

5 30

1

2

1

10

′ ′ ′ ′

′

∠ °30
+ +2 =

−
∠ °30 ∠ °30

⎛
⎝⎝⎝

⎞
⎠⎠⎠

j

j
22VVVV 0′ =

− =( . ) ( . )1. 7 0− ) ( 67 0 02)j j. ) (0 ) 1 ( V)( 67 0 2. )0.j+ ( 671 −( .+ ( 67′ ′   …(ii)
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Writing Eqs (i) and (ii) in matrix form,

0 37 0 1 17 0

17 0 0 67 0 2
1

2

.37 (0 . )1

( .0(0 )1 .017−(0

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤j j0 1 17.0 ( .00 1 −
j j0 0 67. )1 .67 −

V1

V2

′

′
⎦⎦
⎥
⎤⎤

⎦⎦⎦⎦
= ∠ °⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

10 0

0
  

By Cramer’s rule,

      V2VV

0 37 0 1 10 0

17 0 0

0 37 0 1 17 0

17

′ =

0 1 10 °
17−

−

. .37 00

( .0(00 . )1

.37 (0 . )1

( .0

j

j

j j0 1 170 1 −.0 ( .0

−−−

= − °

j j0 0 67 0j− 2

8 57 3∠− 36

)1 .j0j

. .57 3∠ V  

Step II When the 5 0∠ °0 A  source is acting alone (Fig. 6.48)

5 ∠0° A

5 ∠30° V

5 Ω 2 Ω j10 Ω

V2
′′

Fig. 6.48

V V V

V

V

2 2V VV V 2VV

2V

2VV

5 30 5 2 10
5 0

61 11 5V2V 0

8 2

″ ′′ ″

″

″

∠ °30
+ +2 = 5 °

V2VV ∠ °0

= 8

j

( .0 . )93°

. 12∠2 111 93. ° V

Step III By superposition theorem,

V V V2 2V V 2V 8 57 3 36 8 2 11 93 16 62+V2V = 8 57 − °3 36 + ∠8 2 ° = ∠ °4 12′ ″ . .57 357 . .11∠2 . .62∠4  V  

 Example 6.26  Find current through inductor in the network of Fig. 6.49.

2∠0° A

8∠135° V

2∠90° A

−j− 1 Ωj2 Ω

− +

2 Ω

Fig. 6.49

Solution

Step I When the 8 135∠ °135  V  source is acting alone (Fig. 6.50)

Applying KVL to the mesh,

   
8 35 2 0

8 135

1
8 45 8 135

∠ °135 − ′ ′ =

′ =
∠ °135

= 8 ° ∠8 − °135

( )1−

( )← (

j j)1

j

I2

I A →→)

8∠135° V

−j− 1 Ωj2 Ω

− +

2 Ω

I′

Fig. 6.50
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Step II When the 2 0∠ °0  A  source is acting alone (Fig. 6.51)

2∠0° A

−j− 1 Ωj2 Ω

2 Ω

Fig. 6.51

The network can be redrawn as shown in Fig. 6.52.

By current division rule,

′′ = °
−

−
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= °
−⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= ∠ ° →I 2 0∠
1

1 2
2 0∠

1

1
2 180

j

j j1+
j

j
A( )

Step III When the 2 90∠ °90 A  source is acting alone (Fig. 6.53)

2∠90° A

−j− 1 Ωj2 Ω

2 Ω

Fig. 6.53

The network can be redrawn as shown in Fig. 6.54.

By current division rule,

′′′ = °
−

−
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= − ° °I 2 9∠ 0
1

1 2
2 9∠ − 20° 90

j

j j1+
A∠ °2=A ( )←←( )← ( )→

Step III By superposition theorem,

I I I I′ + ′′ ′′′ = ∠− + ∠ + ∠−8 135 2 80 2 9∠ 0 8= 49 154 47° °+ ∠2 180 ° °∠8= 49 154 47. .∠49 154 A

 Example 6.27  Determine the source voltage V
S
  so that the current through 2 W  resistor is zero in 

the network of Fig. 6.55.

20∠90° V

3 Ω 2 Ω 4 Ω

−j− 3 Ωj3 Ω
+

−

+

−
Vs

Fig. 6.55

2∠0° A 2 Ω

−j− 1 Ω

j2 Ω

I′′

Fig. 6.52

2∠90° A2 Ω

j2 Ω

−j− 1 Ω

I′′′

Fig. 6.54
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Solution

Step I When the voltage source V
s
 is acting alone (Fig. 6.56)

3 Ω 2 Ω 4 Ω

−j− 3 Ωj3 Ω
+

−
Vs

I1
′ I2

′ I3
′

Fig. 6.56

Appling KVL to Mesh 1,

V IsV j =3 3I jI 01 j3j−′ ′ ′( )I II1I 2  

( ) 3 23 =j j) 1) sI I33j1 −1 Vs
′ ′   …(i)

Appling KVL to Mesh 2,

− j j3 2− 0=3j3( ) ( )−2 3− I j+ 3j+ 3′ ′ ′ ′ ′  

         − j j+3 2 3 0=3I2++′ ′ ′   …(ii)

Appling KVL to Mesh 3,

      − =j3 4− 03( )3 2− I
′ ′ ′  

        j3 03
′ ′( )j( )4 3j3j4 3j3   …(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

3 3 3 0

3 2 3

0 3 4 3

0

0

1

2

3

−
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥

′

′

′

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

=
⎡

⎣

⎢
⎡⎡j j3 −3

j j3 2

j j3 4

s
I

I

I

Vs

⎢⎢
⎣⎣⎣⎣

⎢⎢⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥  

By Cramer’s rule,

I

V

V
2

3 3 0

3 0 3

0 0 4 3

3 3 3 0

3 2 3

0 3 4 3

′ =

−

−

=

j

j j3 0

j

j j3 −3

j j3 2

j j3 4

sV

sV( )9 12j

Δ
 

Step II When the 20 ∠90° V source is acting alone (Fig. 6.57)

3 Ω 2 Ω 4 Ω

−j− 3 Ωj3 Ω
+

−I1
′′ I2

′′ I3
′′

20∠90° V

Fig. 6.57

Applying KVL to Mesh 1,

   − =3 3 01 333−″ ″ ″j ( )−1 2I I  

         ( ) 3 023j j) 1) I 33j1 −1
″ ″   …(i)
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Applying KVL to Mesh 2,

  − j j3 2− 0=3j3( ) ( )−2 3− I j+ 3j+ 3″ ″ ″ ″ ″  

       − j j+3 2 3 0=3I2++″ ″ ″   …(ii)

Applying KVL to Mesh 3,

     j3 4 20 90 03( )3 2 I
″ ″ ″ − ∠20 ° =  

j3 20 903
″ ″ ∠ °90( )j4 3j3j4 3j3    …(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

3 3 3 0

3 2 3

0 3 4 3

0

0

20 90

1

2

3

−
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎦⎦

⎥⎥ =
− ∠20 °

j j3 −3

j j3 2

j j3 4

I

I

I

″

″

″

⎡⎡

⎣

⎢
⎡⎡⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥

By Cramer’s rule,

I2

3 3 0 0

3 0 3

0 20 90 4 3

3 3 3 0

3 2 3

0 3 4 3

180 18″ =

−
20 ° −4

−

=
− −180

j

j j3 0

j

j j3 −3

j j3 2

j j3 4

j 00

Δ

Step III By superposition theorem,

I I I2 2 2 0

0

+ =I I2I 2 =

=

′ ″ ( )9 12 ( )180 180

( )9 12 ( )180 180

j j+)1 )1212 ( 180− −180

j j+)1 )1212 ( 180− −180

V

V

Δ

( )((

.

180 180

16 9 8 1. 3= ∠.16 97 − °8 13

j j) 180=) +

s

V

Vs V

6.5    THEVENIN’S THEOREM

Thevenin’s theorem gives us a method for simplifying a network. In Thevenin’s theorem, any linear network 

can be replaced by a voltage source V
Th

 in series with an impedance Z
Th

. 

 Example 6.28  Obtain Thevenin’s equivalent network for the terminals A and B in Fig. 6.58.

3 Ω

4 Ω

−j− 4 Ω −j− 4 Ωj5 

j6 Ω

+

−

A

B

50∠0° V

Fig. 6.58
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Solution

Step I Calculation of V
Th

 (Fig. 6.59)

3 Ω

4 Ω

−j− 4 Ω −j− 4 Ωj5

j6 Ω

+
+

−

−
I

VTh

A

B

50∠0° V

Fig. 6.59

Applying KVL to the mesh,

 50 ∠0° − (3 − j4) I − (4 + j6) I = 0

     
I =

∠ °
= − °

50 0
6 87 1∠ − 5 95

( )3 4− ( )4 6
. .87 1∠ 5

j j+)4 (4 +
A

 

 V
Th

 = (4 + j6) I  = (4 + j6) (6.87 ∠−15.95°) = 49.5 ∠40.35° V

Step II Calculation of Z
Th

 (Fig. 6.60)

ZTh = + = − °( )
( )( )

( ) ( )
.

j j)(

j j+) (
−

− +
− +

4 8. 3 1∠ −∠ 13 Ω  

3 Ω

4 Ω

−j− 4 Ω −j− 4 Ωj5 

j6 Ω

ZTh

A

B

Fig. 6.60

Step III Thevenin’s Equivalent Network (Fig. 6.61)

+

−

A

B

4.83 ∠−1.13° Ω

49.5 ∠40.35° V

Fig. 6.61

 Example 6.29  Find Thevenin’s equivalent network for Fig. 6.62.

5 Ω

5 Ω3 Ω

−j− 2 Ω j5 Ω
A

B

10 ∠30° V

+

−

Fig. 6.62
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Solution

Step I Calculation of V
Th

 (Fig. 6.63)

5 Ω

5 Ω3 Ω

−j− 2 Ω j5 Ω
A

B

I1 I2

10 ∠30° V

+
+

−
−

VTh

Fig. 6.63

Applying KVL to Mesh 1,

10 ∠30° − (5 − j2) I
1
 − 3(I

 1
 − I

2
) = 0

              (8 − j2) I
1
 − 3I

2
 = 10 ∠30° …(i)

Applying KVL to Mesh 2,

       −3 (I
2
 − I

1
) − j5 I

2
 − 5 I

2 
= 0

               −3I
1
 + (8 + j5) I

2
 = 0 …(ii)

Writing Eqs (i) and (ii) in matrix form;

             
8 2 3

3 8 5

10 30

0
1

2

−2

− +3 8

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠ °30⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j

j

I

I

By Cramer’s rule,

I

V I

2

2

8 2 10 30

3 0

8 2 3

3 8 5

0 433 9 7

5I2 433 9

=

∠2 10 °
−

−2

− +3 8

= ∠0 433 °

I2 ∠

j

j

j

. .33 9∠433

( .0

 A

ThVV .. ) .7 ) 16 9 7.°)) ∠ °9 7. V

Step II Calculation of Z
Th

 (Fig. 6.64)

ZTh =
+

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬ +

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
= =

( )

[ . . ] ( .

− 3

5 2− 3
5 5⎥

9. 4 0− 5] 9.

j
j

j j. +0

 

 4 444 5

94 4 5

6 94 4 735
3 04 33 4= = 3 04 °

j

j

j

. )735

( .1 . )735

.4.94 j
. .04 3304

 

Ω

Step III Thevenin’s equivalent Network (Fig. 6.65)

+

−

A

B

3.04 ∠33.4° Ω

2.16 ∠9.7° V

 

Fig. 6.65

3 Ω 5 Ω5 Ω

−j− 2 Ω j5 Ω
A

B

ZTh

Fig. 6.64
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 Example 6.30  Obtain Thevenin’s equivalent network for Fig. 6.66.

4 Ω

2 Ω

−j− 4 Ωj6 Ω

A

B

10 ∠0° V

5 ∠90° V
+ + −

−

Fig. 6.66

Solution

Step I Calculation of V
Th

4 Ω

2 Ω

−j− 4 ΩIj6 Ω

A

B

10 ∠0° V

5 ∠90° V

+

+

−

+ +

−

−

− VTh

Fig. 6.67

Applying KVL to the mesh,

( ) 5) 90 0∠5 ° =

                            
I =

∠ °
= °

5 9∠ 0

2 2+
1 77 4∠ 5

j
.  77 4∠ 5 A

 

          V
Th

 = (−j4) I + 5 ∠90° − 10 ∠ 0° = (4 ∠−90°) (1.77 ∠45°) + 5 ∠90° − 10 ∠0°  = 18 ∠146.31° V

Step II Calculation of Z
Th

 (Fig. 6.67)

4 Ω

2 Ω

−j− 4 Ω
j6 Ω

A

B

ZTh

Fig. 6.68

ZTh = + = − °4
2 2+

11 3 4∠− 4 93
( )2 6+ ( )4

. .3 4∠ 4
j j)6 (−

j
Ω

Step III Thevenin’s Equivalent Network 

+

−

A

B

11.3 ∠−44.93° Ω

18 ∠146.31° V

Fig. 6.69



6.5 Thevenin’s Theorem 6.31

 Example 6.31  Obtain Thevenin’s equivalent network for Fig. 6.70.

2 Ω

3 Ω −j− 5 Ω

j15 Ω

A

B

10 ∠0° A

Fig. 6.70

Solution

Step I Calculation of V
Th

 (Fig. 6.71)

By current division rule,

I = = ∠ °
( )∠ ° ( )

. .∠
)° (

5 5− 15
13 42 26 57

j j+5
A

  V
Th 

= (−j5) I

       = (5 ∠−90°) (13.42 ∠26.57°) = 67.08 ∠−63.43° V

Step II Calculation of Z
Th

 (Fig. 6.72)

     ZTh =
−

= − °
( )− ( )j j)( +

j j+
)()(

5 5+ 15
7 0. 7 8∠ −∠ 1 8. 6 Ω

Step III Thevenin’s Equivalent Network 

+

−

A

B

7.07 ∠−81.86° Ω

67.08 ∠−63.43° V

Fig. 6.73

 Example 6.32  Obtain Thevenin’s equivalent network for Fig. 6.74.

21 Ω 50 Ω

30 Ω12 Ω

j24 Ω j60 Ω

A B20 ∠0° V

+

−

Fig. 6.74

2 Ω

3 Ω −j− 5 Ω

j15 Ω

A

B

10 ∠0° A

I

+

−

VTh

Fig. 6.71

2 Ω

3 Ω −j− 5 Ω

j15 Ω

A

B

ZTh

Fig. 6.72
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Solution

Step I Calculation of V
Th

 (Fig 6.75)

21 Ω 50 Ω

30 Ω12 Ω

j24 Ω j60 Ω

A B
20 ∠0° V

+
+ −

−

I1 I2

VTh

Fig. 6.75

I1

20 0

21 12 24
0 49 36 02=

∠ °0

+ +12
= 0 49 − °36 02

j
. .9 3649  A

I2

20 0

80 60
0 2 36 86=

∠ °0

+
= ∠0 2 − °36 86

j
. .36∠2  A

 V
Th 

= (12 + j24) I
1
 − (30 + j60) I

 2
  

          = (26.83 ∠63.43°) (0.49 ∠−36.02°) − (67.08 ∠63.43°) (0.2 ∠−36.86°)

  = 0.33 ∠171.12° V

Step II Calculation of Z
Th

 (Fig. 6.76)

21 Ω

12 Ω j24 Ω

50 Ω

30 Ω j60 Ω

A B

Fig. 6.76

ZTh =
+

+
+

= °
21

33 24

50

80 60
47 4 2∠ 6 8

( )+12 24 ( )+30 60
. .4 2∠ 6

j j
Ω

Step III Thevenin’s Equivalent Network

+

−

A

B

47.4 ∠26.8° Ω

0.33 ∠171.12° V

Fig. 6.77



6.5 Thevenin’s Theorem 6.33

 Example 6.33  Find Thevenin’s equivalent network across terminals A and B for Fig. 6.78.

j2 Ω

5 Ω1 Ω

A

B

2 ∠45° A

10 ∠90° V
−

+

Fig. 6.78

Solution

Step I Calculation of V
Th 

(Fig. 6.79)

j2 Ω

5 Ω1 Ω

A

B

2 ∠45° A

10 ∠90° V
−

+

+

−

VTh

Fig. 6.79

Applying KCL at the node,

V V

V

ThVV ThVV

ThVV

1 2

10 90

5
2 45

1

1 2

1

5
2 45 2 90

+
− ∠10 °

= ∠2 °

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= ∠2 ° ∠ °90

j

j

 

( . ) .

.

5. 7 45 ) 7 67 5.

6 4. 9 112 5

°)) ∠ °67 5.

= ∠6 4. 9 °VThVV V
 

Step II Calculation of Z
Th

 (Fig. 6.80)

5 Ω

1 Ω

j2 Ω

A

B

ZTh

Fig. 6.80

    ZTh =
+

= °
5

5 1+ 2
1 77 4∠ 5

( )+1 2

j
Ω  
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Step III Thevenin’s Equivalent Network (Fig. 6.81)

+

−

A

B

1.77∠45° Ω

6.49 ∠112.5° V

Fig. 6.81

 Example 6.34  Find the current through the ( ) Ω  impedance in the network of Fig. 6.82.

j2 Ω

−j− 2 Ω

5 Ω

3 Ω 2 Ω

5 Ω

20 ∠0° V

20 ∠0° A
−

+

Fig. 6.82

Solution

Step I Calculation of V
Th

 (Fig. 6.83)

−j− 2 Ω

5 Ω

3 Ω 2 Ω

20 ∠0° V 20 ∠0° A

−

+
+

−

A

B

VTh

V1

I2

Fig. 6.83

Applying KCL at the node,

V V

V

1 1V VV V

1VV

20 0

5 2 2
20 0

1

5

1

2 2
20 0 4 0

∠20 °
+

−
= ∠20 °

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= ∠20 ° ∠ °0

j

j

0 51 05 24 0

47 06 29 05

47 06 29 05

. .51 9

. .06 29

. .06 29

∠ °29 0529 24 °
= ∠47 06.06 − °29 05

= ∠− °

V

V

V V=

1V

1VV

ThVV 1V

V

 VVV



6.5 Thevenin’s Theorem 6.35

Step II Calculation of Z
Th

 (Fig. 6.84)

−j− 2 Ω

5 Ω

3 Ω 2 Ω

A

B

ZTh

Fig. 6.84

ZTh = +
−

= − °3
5

5 2+ 2
4 79 1∠− 1 35

( )−2 2
. .79 1∠ 1

j
Ω  

Step III Calculation of I
L
 (Fig. 6.85)

+

−

A

B

4.79∠−11.35° Ω

47.06 ∠−29.05° V
IL j2 Ω

5 Ω

Fig. 6.85

IL
j

=
∠− °

° +
= − °

47 06 29 05

4 79 1∠− 1 35 5° + 2
4 73 3∠− 9 96

. .∠06 29

. .79 1∠ 1
. .73 3∠ 9 A  

 Example 6.35  Find the current through the 5 W  resistor in the network of Fig. 6.86.

5 Ω 4 Ω −j− 2 Ω

j5 Ω

4 ∠0° A6 ∠0° A

Fig. 6.86

Solution

Step I Calculation of V
Th

 (Fig. 6.87)

4 Ω −j− 2 Ω

j5 Ω

4 ∠0° A6 ∠0° A Vth

V1 V2

−

+ A

B

Fig. 6.87
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Applying KCL at Node 1,

V V V

V

1 1V VV V 2VV

1 2VV

4 5
6 0 0

1

4

1

5

1

5
6 0

+
−

+ 6 ° =

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=2 −6 °

j

j
1

j5⎠⎠⎠ 2V2

( . )2. 5 0 0) 2 6 02 ∠ °0j j. )0 )0 ) 1.0 ) 0 2 2.0 21   …(i)

Applying KCL at Node 2,

V V V

V V

2 1V VV V 2VV

1 2V VV V

5 2
4 0

1

5

1

5

1

2
4 0

+ = 4 °

−
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝

⎞
⎠⎠⎠

= 4 °

j j5

j j
1

5⎠⎠⎠ ⎝⎝⎝ j

        j j0 2 0 3 4 02jV Vj0 3 2j 3j0 =2Vj0 3 2j0 3j0 ∠ °0   …(ii)

Writing Eqs (i) and (ii) in matrix form,

0 25 0 2 0 2

0 2 0 3

6 0

4 0
1

2

.25 .

.0

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= −6 °
∠ °0

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j j0 2.0

j j0 2.2

V1

V2

By Cramer’s rule,

V

V

1VV

6 0 0 2

4 0 0 3

0 25 0 2 0 2

0 2 0 3

20 8 126 87=

−6 °
∠ °0

= ∠20 8 − °126 87

j

j

j j0 2

j j0 2

.25 j0 .

.0j2

. .8 126∠8 V

ThVV hh V= = ∠− °V1V 20 8 126 87. .∠8 126

Step II Calculation of Z
Th

 (Fig. 6.88)

4 Ω −j− 2 Ω

j5 Ω

A

B

ZTh

Fig. 6.88

ZTh = = ∠ ° Ω
4

4 2− 5
2 4 53 13

( )2− 5

)
. .∠53

+2

j j+2

Step III Calculation of I
L
 (Fig. 6.89)

IL =
∠− °

∠ ° +
= ∠− °

20 8 126 87

2 4 13 5
3 1 143 47

. .∠8 126

. .∠4 53
. .∠ 143 Α +

−

A

B

2.4 ∠53.13° Ω

20.8 ∠−126.87° V
IL

5 Ω

Fig. 6.89



6.5 Thevenin’s Theorem 6.37

 Example 6.36  In the network of Fig. 6.90, fi nd the current through the 10 W resistor.

5 Ω

2 Ω

10 Ω
1 Ω

−j− 2 Ω

10 ∠0° V

5 ∠30° V

+
+

−

−

Fig. 6.90

Solution

Step I Calculation of V
Th

 (Fig. 6.91)

Applying KVL to the mesh,

j2 1 10 0 5 0

10 0

1 58 161 57

I I1 I

I

I

−I1 ∠ °0 =5I

=I ∠ °0

= ∠1 58 − °161 57

( )j2 66

. .58 161∠58 A

Writing V
Th

 equation,

5 10 0 5 0 0

5 58 161 10 0 5 30 0

I V10 0 5 30 0

V

V

1010 ° ∠ °3030 0 =
∠ − − ∠ °0 ∠5 ° − =

ThVV

ThVV

TVV

( .1 . )57°

hh V= ∠ − °5 32 110 06. .∠3 110

Step II Calculation of Z
Th

 (Fig. 6.92)

ZTh = +
−

= − °2
5

5 1+ 2
3 48 2∠ − 1 04

( )−1 2
. .8 2∠ 1

j
Ω

Step III Calculation of I
L
 (Fig. 6.93)

+

−

A

B

3.48 ∠−21.04° Ω

5.32 ∠−110.06° V
IL

10 Ω

Fig. 6.93

IL =
∠− °

°
= ∠− °

5 32 110 06

3 48 2∠− 1 04 1° + 0
0 4 104 67

. .∠32 110

. .48 2∠ 1
. .∠4 104  A

5 Ω

2 Ω

1 Ω

−j− 2 Ω

10 ∠0° V

5 ∠30° V

+
+

−

− +

−

A

B

VTh

I

Fig. 6.91

5 Ω

2 Ω

1 Ω

−j− 2 Ω

A

B

ZTh

Fig. 6.92
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 Example 6.37  Find the current through ( ) Ω  impedance in the network of Fig. 6.94.

2 Ω j5 Ω −j− 5 Ω
3 Ω

100 ∠0° V 50 ∠90° V

+

−

+

−
j6 Ω

4 Ω

Fig. 6.94

Solution

Step I Calculation of V
Th

 (Fig. 6.95)

2 Ω j5 Ω −j− 5 Ω
3 Ω

100 ∠0° V 50 ∠90° V

+

−

+

−

A

B
I

+

−
VTh

Fig. 6.95

Applying KVL to the mesh,

                         
100 0 2 5 3 5 50 90 0

22 36 26 57

∠ °0 2 − 50 °
= ∠22 36 − °26 57

I 5− I 5

I

j j5 335 I +
. .36 26∠36 A

 

Writing V
Th

 equation,

          

V I

V

V

ThVV

ThVV

ThVV

− ∠ ° =
− ∠− − ∠ ° =

=

3 5I +I 50 90 0

36 26 50 90 0

8

j I

( )3 5− j ( .22 . )°57

0 600 1 82 88. .61 82 ° V

 

Step II Calculation of Z
Th

 (Fig. 6.96)

2 Ω j5 Ω −j− 5 Ω
3 Ω

A

B

ZTh

Fig. 6.96

   ZTh = = °
( )( )

.
+

2 5+ 3 5
6 2. 8 9∠∠ 16

j j)( −
j j+5 3 −

Ω  



6.5 Thevenin’s Theorem 6.39

Step III Calculation of I
L
 (Fig. 6.97)

+

−

A

B

6.28∠9.16° Ω

80.61 ∠−82.88° V
IL j6 Ω

4 Ω

Fig. 6.97

IL
j

=
∠ − °

∠ ° +
= ∠ − °

80 61 82 88

6 28∠ 16 4 6j+
6 52 117 34

. .∠61 82

. .28 9∠
. .∠5 117 A

 Example 6.38  Obtain Thevenin’s equivalent network across terminals A and B in Fig. 6.98.

4 Ω

− j1 Ω

10 ∠0° V

+

−
+
−

j2 ΩI

2 I

A

B

Fig. 6.98

Solution

Step I Calculation of V
Th

 (Fig. 6.99)

Applying KVL to the mesh,

        10 0 4 1 2 0

1 64 9 46

∠ °0 4 =2

= 1 64 °
I I1+ I

I

j

. .64 964 A

Writing V
Th

 equation,

    

10 0 4 0 0

10 0 4 64 9 0

3 69 17

∠ °0 4

∠ °0 644 − =
= 3 69 − °17

I V0−
V

V

ThV

ThVV

ThVV  V

( .(11 . )46°

Step II Calculation of I
N
 (Fig. 6.100)

From Fig. 6.100,

I I1

Applying KVL to Mesh 1,

         
10 0 4 1 2 0

10 0 4 1 1 2 0

1

1 2 12

∠ °0 4 =
∠ °0 4 2

I 11 1+1 I2

I1I I I1 11 +1 1

j

j j11 11

( )1 2
 

                         ( ) 1 10 02 = 10 °j j) 1) I 11j1 +1   …(i)

Applying KVL to Mesh 2,

    
2I I

I

2 =I2j j

j jI −I j

1 2 0

2 1I 1 0I I =I1 j I 1 2jjj 2

( )I II I−I I−

4 Ω

− j1 Ω

10 ∠0° V
+

−
+
−

j2 ΩI

2 I

A

B

+

−

VTh

Fig. 6.99

4 Ω

− j1 Ω

100 ∠0°V

I1 I2

+

−
+
−

j2 Ω

2 I

IN

I A

B

Fig. 6.100
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( ) 1 021j j) 1)I 11j11 …(ii)

Writing Eqs (i) and (ii) in matrix form,

6 1 1

2 1 1

10 0

0
1

2

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠ °0⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j j1

j j1 −1

I

I

By Cramer’s rule,

I

I I

2

2

6 1 10 0

2 1 0

6 1 1

2 1 1

2 71 102 53

2 71

=

∠1 10 °

= ∠2 71 − °102 53

=I2 ∠−

j

j

j j1

j j1 −1

N

. .7 102∠71  A

10211 53. ° A

Step III Calculation of Z
Th

Z
V

I
Th

ThVV
= =

°
∠ − °

= °
N

3 69 1∠ − 7

2 71 102 53
1 36 8∠ 5 53

. .∠71 102
. .36 8∠ 5 Ω

Step IV Thevenin’s Equivalent Network (Fig. 6.101)

−

+
3.69 ∠−17° V

1.36 ∠85.53° Ω
A

B

Fig. 6.101

 Example 6.39  Find Thevenin’s equivalent network across terminals A and B for Fig. 6.102.

−

+
5 ∠0° V

A

B

2 Ω j4 Ω

1 Ω

0.2 Vx

−

+

Vx

Fig. 6.102

Solution  

Step I Calculation of V
Th

 (Fig. 6.103)

From Fig. 6.103,

     I = −0 2VxV   … (i)

Writing V
Th

 equation,

− ∠ °I V+ ° −∠∠ 0 0=V− xVV  

−

+
5 ∠0° V

A

B

2 Ω j4 Ω

1 Ω

0.2 Vx

−

+

Vx = VTh

I

Fig. 6.103



6.6 Norton’s Theorem 6.41

0 2 5 0 0

6 25 0

6 25 0

V V0

V

V V

x xV V5 0

xV

xV

555 ° =
= 6 25 °

=V ∠ °0

 V

 VThVV

Step II Calculation of I
N
 (Fig. 6.104)

−

+
5 ∠0° V

A

B

2 Ω j4 Ω

1 Ω

0.2 Vx

−

+

Vx IN

Fig. 6.104

From Fig. 6.104,

        VxV = 0

The dependent source depends on the 

controlling variable V
x
. When VxV = 0,  the 

dependent source vanishes, i.e. 0 2 0VxV =  as 

shown in Fig. 6.105.

     IN
j

=
∠ °

+
= − °

5 0∠
1 2+ 4

1 5∠− 3 13.13 A

Step III Calculation of Z
Th

 

Z
V

I
Th

ThVV
= =

∠ °
°

= ∠ °
N

6 25 0∠
1 5∠− 3 13

6 2 5∠ 3 13. .25 5∠ 3 Ω  

Step IV Thevenin’s Equivalent Network (Fig. 6.106)

6.25 ∠0° V

A

B

6.25 ∠53.13° Ω

−

+

Fig. 6.106

6.6    NORTON’S THEOREM

Norton’s theorem states that any linear network can be replaced by a current source I
N
 parallel with 

an impedance Z
N
 where I

N
 is the current fl owing through the short-circuited path placed across the 

terminals.

−

+
5 ∠0° V

A

B

2 Ω j4 Ω

1 Ω

IN 

Fig. 6.105
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 Example 6.40  Obtain Norton’s equivalent network between terminals A and B as shown in Fig. 6.107.

A

B

−j5 Ω

4 Ω

j4 Ω3 Ω

25 ∠0° V
+

−

Fig. 6.107

Solution

Step I Calculation of I
N 

(Fig. 6.108) 

When a short circuit is placed across (4 − j4) Ω impedance, 

it gets shorted as shown in Fig. 6.109.

    

−

+
25 ∠0° V

A

B

3 Ω j4 Ω

IN

Fig. 6.109

IN
j

=
∠ °

= ∠− °
25 0

3 4j+
5 5∠− 3 13.13 A  

Step II Calculation of Z
N
 (Fig. 6.110)

ZN
j j

= = °
( )j ( )j

.
j+ j j

3 4j+ j 4 5j
4 5. 3 9∠∠ 92 Ω

Step III Norton’s Equivalent Network

4.53∠9.92° Ω5∠−53.13° A

A

B

Fig. 6.111

 Example 6.41  Obtain Norton’s equivalent network at the terminals A and B in Fig. 6.112.

j4 Ωj2 Ω

4 Ω1 Ω

5 Ω
A

B

10 ∠30° A

Fig. 6.112

j4 Ω3 Ω

25 ∠0° V
4 Ω

−j5 Ω

A

B

IN

++

−

Fig. 6.108

A

B

−j5 Ω

4 Ω

j4 Ω3 Ω

ZN

Fig. 6.110
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Solution

Step I Calculation of I
N
 (Fig. 6.113)

j4 Ωj2 Ω

4 Ω1 Ω

5 Ω A

B

10 ∠30° A
IN

Fig. 6.113

By series-parallel reduction technique (Fig. 6.114)

5 Ω A

B

10 ∠30° A 1.62 ∠58.24° Ω IN

Fig. 6.114

IN = ∠ °( ) ∠ °
∠ °

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= °10 30
1 62∠

1 62∠ 24 5° +
2 69 7∠ 5

. .62 5∠ 8

. .62 5∠ 8
.69 7∠ 5 A  

Step II Calculation of Z
N
 (Fig. 6.115)

j4 Ω

4 Ω

j2 Ω

1 Ω

5 Ω
A

B

ZN

Fig. 6.115

ZN
j j

= + = °5
1 2j+ j 4 4j

6 01 1∠ 3 24
( )j1 2j+ j ( )j4 4j

. .01 1∠ 3 Ω
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Step III Norton’s Equivalent Network (Fig. 6.116)

A

B

2.69 ∠75° A 6.01 ∠13.24° Ω

Fig. 6.116

 Example 6.42  Find Norton’s equivalent network across terminals A and B in Fig. 6.117.

j4 Ω 10 Ω

3 Ω

A

B

4 ∠45° A

25 ∠90° V

−

+

Fig. 6.117

Solution

Step I Calculation of I
N
 (Fig. 6.118)

j4 Ω 10 Ω

3 Ω

A

B

4 ∠45° A

25 ∠90° V
−

+
IN

Fig. 6.118

When a short circuit is placed across the ( ) Ω  impedance, it gets shorted as shown in Fig. 6.119.

10 Ω

A

B

4 ∠45° A

25 ∠90° V
−

+
IN

Fig. 6.119
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By source transformation, the network is redrawn as shown in Fig. 6.120.

10 Ω

A

B

4 ∠45° A IN2.5 ∠90° A

A

B

4 ∠45° A IN2.5 ∠90° A

(a) (b)

Fig. 6.120

IN = 4 4∠ 5 2+ 9∠ 6∠0 2 04° °2+ 5 9∠ 0 6.03 °. .5 9∠ 6∠0 2 A

Step II Calculation of Z
N
 (Fig. 6.121)

j4 Ω

10 Ω

3 Ω

A

B

ZN

Fig. 6.121 

ZN
j

=
+

= °
10

10 3 4j+
3 68 3∠ 6 03

( )j3 4j+
. .68 3∠ 6 Ω  

Step III Norton’s Equivalent Network (Fig. 6.122)

A

B

6.03 ∠62.04° A 3.68 ∠36.03° Ω

Fig. 6.122

 Example 6.43  Obtain the Norton’s equivalent network for Fig. 6.123.

j2 Ω −j− 5 Ω

j5 Ω

5 Ω

A

B

10 ∠0° A j3 Ω

Fig. 6.123
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Solution

Step I Calculation of I
N
 (Fig. 6.124)

j2 Ω −j− 5 Ω

5 Ω

A

B

10 ∠0° A j3 Ω

j5 Ω

IN

Fig. 6.124

By source transformation, the network can be redrawn as shown in Fig. 6.125.

Writing KVL equations in matrix form,

     
5 5

5 0

50 0

0
1

2

j

j

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠ °0⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

I

I

By Cramer’s rule,

I

I I

2

2

5 50 0

5 0

5 5

5 0

10 90

10 90

=

∠ °0

= ∠10 − °90

=I2 ∠− °

j

j

j

N

 A

A

Step II Calculation of Z
N
 (Fig. 6.126)

j2 Ω −j− 5 Ω

5 Ω j3 Ω

j5 Ω

ZN

Fig. 6.126

  ZN j
j j

= +j =5
5 5 5j j+ j

5
( )j5 5j+ j ( )j5

Ω

Step III Norton’s Equivalent Network (Fig. 6.127)

5 Ω10∠−90° A

A

B

Fig. 6.127

j2 Ω
−j− 5 Ω

5 Ω
A

B

j3 Ω

j5 Ω

IN

I2

I1

50 ∠0° V

+

−

Fig. 6.125
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 Example 6.44  Obtain the Norton’s equivalent network for Fig. 6.128.

10 Ω 5 Ω

10 Ω

−j− 2 Ω

5 Ω

j2 Ω

A B
10 ∠45° V

+

−

Fig. 6.128

Solution

Step I Calculation of I
N
 (Fig. 6.129)

Writing KVL equations in matrix form,

15 2 10 2 5

10 2 15 2 0

5 0 15 2

101

2

3

− −2

− +10

− +5 0 15

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥ =
j j2 102

j j2 15

j

I

I

I

∠ °∠∠⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
45

0

0

By Cramer’s rule,

I2

15 2 10 45 5

10 2 0 0

5 0 15 2

15 2 10 2 5

10 2 15 2 0

=

− 2 10 °
− +10

− +5 0 15

− −2

− +10

−

j

j

j

j j2 102

j j2 15

5 055 15 2

1 41 28

+

= ∠1 °

j

.  28 A

   I3

15 2 10 2 10 45

10 2 15 2 0

5 0 0

15 2 10 2 5

10 2 15

=

− ∠2 10 °
− +10

−
− −2

− +10 −

j j2 102

j j2 15

j j2 102

j jj

j

2 0

5 0 15 2

0 49 37 41

− +5 0 15

= 0 49 °. .49 3749 A  

I I IN −I = ∠ ° = ∠− °3 2I− 0 49 3∠ 7 41 1− 41 28 0 51 135. .49 3∠ 7 . .28 0 A

Step II Calculation of Z
N
 (Fig. 6.130)

10 Ω 5 Ω

10 Ω

−j− 2 Ω

5 Ω

j2 Ω

A B
ZN

5 Ω 10 Ω j2 Ω

− j2 Ω10 Ω 5 Ω

A B

(a) (b)

Fig. 6.130

10 Ω 5 Ω

10 Ω

−j− 2 Ω

5 Ω

j2 Ω

A B
10 ∠45° V

+

−

I2

I3

IN
I1

Fig. 6.129
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ZN
j j

= + =
5

5 1+ 0 2j−
5

5 1+ 0 2j+
6 72

( )j10 2j− ( )j10 2j+
.  72 Ω

Step III Norton’s Equivalent Network (Fig. 6.131)

A

B

0.51 ∠−135° A 6.72 Ω

Fig. 6.131

 Example 6.45  Find the current through the 8 W  resistor in the Network of Fig. 6.132.

j4 Ω

10 Ω
8 Ω

20 ∠0° V 5 ∠0° A

5 Ω

+

−

Fig. 6.132

Solution

Step I Calculation of I
N
 (Fig. 6.133)

j4 Ω

10 Ω

5 Ω

A

B

IN 5 ∠0° A20 ∠0° V
+

−

Fig. 6.133

When a short circuit is placed across the ( ) Ω  impedance, it gets shorted as shown in fi g. 6.134.

5 Ω

A

B

IN 5 ∠0° A20 ∠0° V
+

−

Fig. 6.134
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By source transformation, the network is redrawn as shown in Fig. 6.135.

5 Ω

A

B

IN 5 ∠0° A4 ∠0° A

Fig. 6.135

IN = ° + ∠ ° = °4 0∠ 5 0∠ 9 0∠ A

Step II Calculation of Z
N
 (Fig. 6.136)

j4 Ω

10 Ω

5 Ω

A

B

ZN

Fig. 6.136

ZN
j

= = °
5

5 1+ 0 4j+
3 47 6∠ 87

( )j10 4j+
. .47 6∠ Ω

Step III Calculation of I
L
 (Fig. 6.137)

   

IL =
∠ °

∠ ° +
= − °

9 0∠
3 47∠ 87 8

0 79 2∠− 08
. .47 6∠

. .79 2∠ A

 Example 6.46  Obtain Norton’s equivalent network across the terminals A and B in Fig. 6.138.

A

B

10 ∠0° V j 10j Ω

−j− 5 Ω

5I

100 Ω

+

−

I

 

Fig. 6.138

9 ∠0° A 3.47 ∠6.87 Ω

A

B

8 Ω

IL

Fig. 6.137
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Solution

Step I Calculation of V
Th

 (Fig. 6.139)

A

B

10 ∠0° V j10 Ω VTh

I −j− 5 Ω

5I

100 Ω

+

+ + +

−

−

−

−

Fig. 6.139

        I =
∠
+

= ∠−
10 0

100 10
0 1 5 71

°
°

j
. .∠1 5 A

Writing V
Th 

equation,

10 0 0

10 0 100 1 5

∠0

∠ −0 ∠−
° 00 (

1 5∠° 100

Vj

( .0(0 . )71°71 ( )5j ( )5 ( .0

)(5 ) ThV

1 511 0

3 5 85 1

− =
= ∠3 5

. )71

. .5 85∠5 V°
V

V

ThV

ThVV

Step II Calculation of I
N
 (Fig. 6.140)

A

B

10 ∠0° V j10 Ω

I

IN

−j− 5 Ω

5I

100 Ω

+

+ −

−

Fig. 6.140

By source transformation, the network is redrawn as shown in Fig. 6.141.

A

B

10 ∠0° V j10 Ω

I

IN

−j− 5 Ω −j− 25 I
100 Ω

+

+ −

−
I2I1

 

Fig. 6.141

From Fig. 6.141,

 I = I
1 

…(i)
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Applying KVL to Mesh 1,

10 0 100 10 0

10 10 0

1 0

210

∠ −0 =
= ∠10

°
°

I 101 1010

I I1010

j

j1I1 −1

( )1 2−1I I

( )100 10+ j10j1010
  

…(ii)

Applying KVL to Mesh 2,

−
− +

j j+ j

j j j j

j j

10 5 2j 5 0=
10 10 5 25 0=

35

2

1j 0 1jj 5

2j5

( )− 2+ j 5

I j+ I10j+ 10 2j+ 52j+ 5

I Ij5j− 5 == 0

  

…(iii)Writing Eqs (ii) and (iii) in matrix form,

100 10 10

35 5

10 0

0
1

2

+⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j j10 −10

j j35 −
I

I

°
 

By Cramer’s rule,

I2

100 10 10 0

35 0

100 10 10

35 5

0 6 30 96=

+ ∠10 10

+
= ∠0 6

j

j

j j10 −10

j j35 −

°

°. .6 30∠6 A  

   I IN =I ∠2 0 6 30 96. .∠6 30 ° Α  

Step III Calculation of Z
N

Z
V

I
N

N

= =
∠
∠

=ThVV 3 5 85 1

0 6 30 96
5 83 5∠ 4 14

. .∠5 85

. .∠6 30
. .83 5∠ 4

°
°

° Ω  

Step IV Norton’s Equivalent Network (Fig. 6.142)

A

B

0.6 ∠30.96° A 5.83∠54.14° Ω

Fig. 6.142

 6.7    MAXIMUM POWER TRANSFER THEOREM

This theorem is used to determine the value of load impedance for which 

the source will transfer maximum power.

Consider a simple network as shown in Fig. 6.143.

There are three possible cases for load impedance Z
L
.
 

+

−
ZL

Vs

Zs

Fig. 6.143
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Case (i) When the load impedance is variable resistance (Fig. 6.144)

I

I

L
L

s

V V

V

s

L

s

The power delivered to the load is

        
s L

s

V
2

For power to be maximum,

dP

L

=

⎡
⎢

0

2

2
V

{(

[( s

 

R

R RL
2

0

0−

R X s
2+  

Hence, load resistance R
L
 should be equal to the magnitude of the source impedance for maximum 

power transfer.

Case (ii)  When the load impedance is a complex impedance with 

variable resistance and variable reactance (Fig. 6.145)

I

I

L
s

L
s

V

V

The power delivered to the load is

L L
S L=

2
V

 

For maximum value of P
L
, denominator of the equation should be small, ie. .

PL
S L=

V
2

2( )
 

+

IL

ZL = RL

S RS + jXS

Vs

Fig. 6.144 Purely resistive load

+

S = RS + jXS

ZL = RL + jXL
Vs

Fig. 6.145  Complex impedance load
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Differentiating the above equation w.r.t. R
L
 and equating to zero,

dP

dR

R

R

L

L
s

L

=
−

⎣
⎢

⎦
−

V
2

2

2
0

2

Rs L+
( )

(

R −
=

=
2− 2 0R

0

 

Hence, load resistance R
L
 should be equal to source resistance R

L
 and load reactance X

L

should be equal to negative value of source reactance for maximum power transfer.

ss=  

i.e. load impedance should be a complex conjugate of the source impedance.

Case (iii)  When the load impedance is a complex impedance with variable resistance and fi xed reactance 

(Fig. 6.146)

      

I
V

I
V

L

L
s

The power delivered to the load is

      
s LV

2

For maximum power,

dP

R

L

s

−

0

22
V

Rs L+
{(

0

2 0−

+ +R

R

L L

2

0

0

=

 

R

X L

2+

=

=

+=

( )

L

L

 

+

S = RS + jXS

L  RL + jXL
Vs

Fig. 6.146 Complex impedance load
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Hence, load resistance R
L
 should be equal to the magnitude of the impedance s LjX L+ , i.e. 

Zs LjX L+  for maximum power transfer.

 Example 6.47  For maximum power transfer, fi nd the value of Z
L 

in the network of Fig. 6.147 if 

(i) Z
L 

is an impedance, and (ii) Z
L 

is pure resistance.

Vs ZL

6 Ω −j− 8 Ω

+

−

Fig. 6.147

Solution    Zs = ( )jj− Ω  

(i) If Z
L 

is an impedance

For maximum power transfer,  Z ZL sZ =ZZ
* ( )jj+ Ω  

(ii) If Z
L
 is a resistance

For maximum power transfer,  Z ZL SZ j=ZSZ =6 8j+ j 10 Ω  

 Example 6.48  For the maximum power transfer, fi nd the value of Z
L
 in the network of Fig. 6.148 

for the following cases:

(i) Z
L 

is variable resistance, (ii) Z
L 

is complex impedance, with variable resistance and variable reactance, 

and (iii) Z
L 

is complex impedance with variable resistance and fi xed reactance of j5 W.

j5 Ω

3 Ω2 Ω

A

B

5 ∠0° V

10 A

Fig. 6.148

Solution Thevenin’s impedance can be calculated by replacing voltage source by a short circuit and current 

source by an open circuit.

j5 Ω

3 Ω

2 Ω

A

B

ZTh

Fig. 6.149
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ZTh =
+

= +
3

3 2+ 5
1 0

( )+2 5
( .2 . )9

j
j Ω

For maximum power transfer, value of Z
L 

will be,

(i) Z
L 

is variable resistance

Z ZL j=Z =+ jTh 2 1 0 9 2 28. .j+ j1 0 . Ω  

(ii) Z
L 

is complex impedance with variable resistance and variable reactance

Z ZL j=Z −Th
* ( . . )1. 0. Ω  

(iii) Z
L 

is complex impedance with variable resistance and fi xed reactance of j5 Ω

Z ZL j j j+Z =Th 5 2 1 0j 9 5j+ j 6 26.j 0j Ω  

 Example 6.49  Find the impedance Z
L
 so that maximum power can be transferred to it in the network 

of Fig. 6.150. Find maximum power.

3 Ω 3 Ω

− j3 Ωj3 Ω5 ∠0° V

+

−
ZL

Fig. 6.150

Solution

Step I Calculation of V
Th

 (Fig. 6.151)

− j3 Ωj3 Ω

3 Ω 3 Ω

5 ∠0° V

+

+

−

−

IT

VTh

I

A

Fig. 6.151

Z

I

T

T

j

j j
= + = °

=
∠ °

∠ °
= ∠

3
3

3 3 3j j+ j
6 71 2∠ 6 57

5 0∠
6 71∠ 57

0 75

( )j3 3
. .71 2∠ 6

. .71 2∠ 6

Ω

− °−− 26 57.  A

By current division rule,

= − ° × = °

=

0 75 2∠− 6 57
3

3 3 3+
0 75 6∠ 3 43. .75 2∠ 6 . .75 6∠ 3

( )− 3 (

 A

Th

I

VT

j

j j33 −
0 700 5 3 24 26 57. .75 63 ) .2 .∠ °63 4363 ∠24.2 − °26 57  V
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Step II Calculation of Z
Th

 (Fig. 6.152)

 Z
Th 

= [(3 || j3) + 3] || (−j3)

  = 3 ∠−53.12° Ω
 = (1.8 − j2.4) Ω

Step III Calculation of Z
L

For maximum power transfer, the load impedance 

should be a complex conjugate of the source impedance.

 Z
L
 = (1.8 + j2.4) Ω 

Step IV Calculation of P
max

 (Fig. 6.153)

+

−

(1.8 − j2.4) Ω

(1.8 + j2.4) Ω2.24 ∠−26.57° V

A

B

Fig. 6.153

P
RLR

maPP x W= = =
| |Th | . |

.

T
2 2| |

4

2. 4

4 1× 8
0 7.

 Example 6.50  Find the value of Z
L
 for maximum power transfer in the network shown and fi nd maxi-

mum power.

j10 Ω

−j− 20 Ω

5 Ω

7 Ω

100 ∠0° V

+ − ZL

Fig. 6.154

Solution

Step I Calculation of V
Th

 (Fig. 6.155)

  

I

I

1

2

100 0

5 10
8 94 63 43

100 0

7 20
4 72 70 7

=
∠ °0

= 8 94 − °63 43

=
∠ °0

= 4 72 °

j

j

. .94 6394

. .72 7072

A

A

 

− j3 Ωj3 Ω

3 Ω 3 Ω
A

B

Fig. 6.152

j10 Ω −j− 20 Ω

5 Ω 7 Ω

100 ∠0° V

+
+ −

−

I2

A B

I1

VTh

Fig. 6.155
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V V VThVV V = − ∠A BV V−V ∠( . . )° ( )j ( )° ( )j9. 4 6∠ − 3. )° ( j −) ( 2 70 °° j− 7=) 1 7. 6 9∠∠ 7 3.33° V
 

Step II Calculation of Z
Th

 (Fig. 6.156)

j10 Ω −j− 20 Ω

5 Ω 7 Ω

A B

Fig. 6.156

ZTh = + =
∠ °
∠ °

+
∠− °5

5 1+ 0

7

7 2− 0

50 90

11 18 43

140 90

21

( )10 ( )2− 0

. .∠18 63j j .. .
( . . )

19 70 7
23 0.

∠− °
−= ( 23 j Ω

 

Step III  For maximum power transfer, the load impedance should be complex conjugate of the source 

impedance.

Z
L
 = (10.23 + j0.18) Ω

Step IV Calculation of P
max

 (Fig. 6.157)

+

−

(10.23 − j0.18) Ω

(10.23 + j0.18) Ω71.76 ∠97.3° V

A

B

Fig. 6.157

P
RLR

maPP x  W= = =
| |Th | . |

.
T

2 2| |

4

76

4 1× 0 2. 3
125 84

 Example 6.51  Find the value of load impedance Z
L
 so that maximum power can be transferred to it in 

the network of Fig. 6.158. Find maximum power.

+

−
j10 Ω

3 Ω

2 Ω

50 ∠45° V
ZL

Fig. 6.158
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Solution

Step I Calculation of V
Th

 (Fig. 6.159)

+ +++

−−
j10 Ω

3 Ω

2 Ω

50 ∠45° V VThTT

I

AAA

BB

Fig. 6.159

I

V

=
∠ °

+
= − °

∠−

50 5

3 2+ 10
4 47 1∠− 8 43

I 47

j

I =

. .7 1∠ 8

( )2 10j ( )2 10j+2 ( .4

 A

ThVV 1811 45 6 6. )43 . .6 60=) ∠ °60 2660  V

 

Step II Calculation of Z
Th

 (Fig. 6.160)

j10 Ω

3 Ω

2 Ω

ZThTT

A

B

Fig. 6.160

ZTh =
+

=
3

3 2+ 10
64 0+

( )+2 10
( .2 . )72

j
j Ω

Step III Calculation of Z
L

For maximum power transfer, the load impedance should be complex conjugate of the source 

impedance.

Z
L
 = (2.64 − j0.72) Ω

Step IV Calculation of P
max

 (Fig. 6.161)

+

−

(2.64 + j0.72) Ω

(2.64 − j0.72) Ω45.6 ∠60.26° V

A

B

Fig. 6.161

P
RLR

maPP x W= = =
| |Th | . |

.
.

T
2 2| |

4

6

4 2× 64
196 91
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 Example 6.52  Determine the load Z
L
 required to be connected in the network of Fig. 6.162 for 

 maximum power transfer. Determine the maximum power drawn.

j1 Ω

2 Ω 4 Ω4 ∠0° A ZL

Fig. 6.162

Solution

Step I Calculation of V
Th

 (Fig. 6.163)

j1 Ω

2 Ω 4 Ω4 ∠0° A

I1 I2

A

B

VTh

+

−

Fig. 6.163

I

V I

2

2

4 0
2

6 1
1 31 9 46

4 4I2 315 9 5 26

= 4 ° × = ∠1 315 − °9 46

I2 ∠− ∠−
j

. .315 9∠315

( .1 . )46° .

A

ThVV 9 499 6° V

 

Step II Calculation of Z
Th

 (Fig. 6.164) 

ZTh =
+

= ° =
4

4 2+ 1
1 47 1∠ 7 1 41 0+

( )+2 1
. .7 1∠ 7 ( .1 . )43

j
j Ω

Step III Calculation of Z
L

For maximum power transfer, the load impedance 

should be the complex conjugate of the source impedance.

Z
L
 = (1.41 − j0.43) Ω

Step IV Calculation of P
max

 (Fig. 6.165)

+

−

(1.41 + j0.43) Ω

(1.41 − j0.43) Ω5.26 ∠−9.46° V

A

B

Fig. 6.165

P
RLR

maPP x W= = =
| |Th | . |

.

T
2 2| |

4

2. 6

4 1× 41
4 9. 1  

j1 Ω

2 Ω 4 Ω

A

B

ZTh

Fig. 6.164
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 Example 6.53  In the network shown in Fig. 6.166, fi nd the value of  Z
L    

for which the power  transferred 

will be maximum. Also fi nd maximum power.

5 ∠60° Ω 10 ∠−30° Ω

10 ∠0° V 5 ∠90° VZL

+

−

+

−

Fig. 6.166

Solution

Step I Calculation of V
Th 

(Fig. 6.167)

5 ∠60° Ω 10 ∠−30° Ω

A
VTh

B

I

10 ∠0° V 5 ∠90° V

+

−

++

− −

Fig. 6.167

Applying KVL to the mesh,

10 0 60 90

26 11 18 3 4

∠0

∠− ∠11 18 −
° (5 ° 5 ° = 0
11.18

) )) )( 0 300 °30

. (57 −° . .18 3∠18

30

3 033°)

AI = 1 2∠− 3 14°
 

Writing V
Th 

equation,

10 0 60 0

10 0 60 1 23 0

6 71

∠0

∠0 ∠ − − =
=

° (5 °)
° (5 °

V

V

V

ThV

ThVV

ThVV

) ( . )14°
∠ −∠∠ 26 56. ° V

 

Step II Calculation of Z
Th

 (Fig. 6.168)

5 ∠60° Ω 10 ∠−30° Ω

A
ZTh

B

Fig. 6.168

ZTh = = +
(

. ( . .
5 6∠ 0

5 6∠ 0 3∠− 0
4 47 3∠∠ 3 4. 3 = ( 73 2 4. 6

°)(10 °3∠− 0 )
° 0 °

° Ω j )) Ω
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Step III Calculation of Z
L

For maximum power transfer, the load impedance should be the complex conjugate of the source 

impedance.

L j=ZTh
* ( . . )7. 3 2j− Ω  

Step IV Calculation of P
max

 (Fig. 6.169)

A

B

+

−
6.71 ∠−26.56° V

(3.73 − j2.46) Ω

(3.73 + j2.46) Ω

Fig. 6.169

P
RLR

maPP x

( . )
= = =

VThVV
W

2 2

4

7. 1

4
3 0. 2

× 3.73
 

 Example 6.54  In the network shown in Fig. 6.170, fi nd the value of Z
L 

so that power transfer from 

the source is maximum. Also fi nd maximum power.

j9 Ω

j9 Ωj9 Ω

ZL
8 Ω

10 ∠0° V

+

−

Fig. 6.170

Solution

Step I Calculation of V
Th

 (Fig. 6.171)

Applying Star-delta transformation (Fig. 6.172)

Z Z Z1 2Z 3
9 9 9

3=Z2Z = =
( )9 ( )9j j)9 (

j j j9 9999
j Ω

 V
Th 

=
 
Voltage drop across (8 + j3)Ω impedence

=
∠

=( )+
10 0

8 3+ 3
8 5. 4 1∠−∠ 6 3. 1

j j+3

°
° V

A

B

VTh

j9 Ω

j9 Ωj9 Ω

8 Ω

+
−

10 ∠0° V

Fig. 6.171



6.62 Network Analysis and Synthesis

A

B

VTh
8 Ω

+
−

Z3

Z1

Z2

10 ∠0° V

Fig. 6.172

Step II Calculation of Z
Th

 (Fig. 6.173)

j3 Ω

j3 Ω

j3 Ω

8 Ω

ZTh

Fig. 6.173

ZTh = + = Ω + Ωj
j

j j+
j3

3

3 8+ 3
5 1 8∠ 2 49 Ω = 72 5

( )j+8 3

)
. .51 8∠ 2 ( .0 . )46°

 

Step III Calculation of Z
L

For maximum power transfer, the load impedance should be the complex conjugate of the source 

impedance.

Z ZL j=Z − Ω∗
Th ( . . )7. 2 5j− j

Step IV Calculation of P
max

 (Fig. 6.174)

A

B

+

−
8.54 ∠−16.31° V

(0.72 − j5.46) Ω

(0.72 + j5.46) Ω

Fig. 6.174

P
RLR

maPP x

( . )

.
.= = =

VThVV
W

2 2

4

5. 4

4 0× 72
25 32
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 Example 6.55  For the network shown in Fig. 6.175, fi nd the value of Z
L
 that will transfer maximum 

power from the source. Also fi nd maximum power.

j10 Ω4 Ω

5Vx

Vx

ZL

100 ∠0° V
+
−

+

−

+

−

Fig. 6.175

Solution 

Step I Calculation of V
Th

 (Fig. 6.176)

From Fig 6.176,

      V IxV 4

Applying KVL to the mesh,

             

100 0 4 10 5 0

100 0 5 0

100 0

24 10

∠0 −
∠0 =

=
∠

+
=

°
°

°

I I10− 10 V

I 5−

I

j

j

xV

( )4 10+ 10j ( )4I4

3 833 5 22 62. .85 22 ° Α

 

Writing V
Th

 equation,

100 0 4 0

100 0 4 85 22 0

86 3 95

∠ 0 =
∠0

= ∠86

°
85 22° 4

°

I V−
V

V

ThV

ThV

ThVV V

( .3(3 . )62°62  

Step II Calculation of I
N
 (Fig. 6.177)

From Fig. 6.177,

        V IxV 4 1  

Applying KVL to Mesh 1,

        
100 0 0

25
1

1

∠0

=
° 4

I A
 

Applying KVL to Mesh 2,

  

−
− =
− − =

= ∠
−

j

j

j

x

N

10 5 0=x

10 0

10 5 0

50 90

2

2 5

2

2

1

I V− x5 x2

I 52 − 5

I

I

I I=N

( )4 14I44

( )100

°A

II2 25 50 90 63 43= −25 ∠ ∠90 −° 55.9 °Α.

 

Step III Calculation of Z
Th

    
Z

V

I
Th

ThVV
= =

∠
= Ω + Ω

N

j
86 3 95

55 9 6∠− 3 43
1 54 6∠ 7 38 Ω = 59

. .9 6∠ 3
. .54 6∠ 7 ( .0 . )

°
°

°
 

j10 Ω

5Vx

Vx
4 Ω +

−

VTh

A

B
I

+

−

−

+

100 ∠0° V
+
−

Fig. 6.176

j10 Ω4 Ω

5Vx

Vx

IN

A

B
100 ∠0° V

+
−

+

−

+

−
I2I1

Fig. 6.177
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Step IV Calculation of Z
L

For maximum power transfer,   L j=Z − Ω∗
Th ( . . )5. 9 1j− j

Step V Calculation of P
max

 (Fig. 6.178)

A

B

+

−
86 ∠3.95° V (0.59 − j1.42) Ω

(0.59 + j1.42) Ω

Fig. 6.178

P
RLR

maPP x

( )

.
.= = =

VThVV
W

2 2

4 4 0× 59
3133 9  

 6.8    RECIPROCITY THEOREM

The Reciprocity theorem states that ‘In a linear, bilateral, active, single-source network, the ratio of excitation 

to response remains same when the positions of excitation and response are interchanged.’

 Example 6.56  Find the current through the 6 W resistor and verify the reciprocity theorem.

1 Ω

+

−

2 Ω

I

−j− 1 Ω

j1 Ω
5 ∠0° V

Fig. 6.179

Solution

Case I Calculation of current I when excitation and response are not interchanged (Fig. 6.180)

1 Ω

2 Ω

I

I1 I2

−j− 1 Ω

j1 Ω
+

−
5 ∠0° V

Fig. 6.180

Applying KVL to Mesh 1,

5 0 1 1 0

1 5 0

1

21

∠ °0 −1 =
∠5 °

11

I 11

j

j1I1 −1

( )1 2− 2I I

( )1 1j11

  

…(i)
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Applying KVL to Mesh 2,

−
− =

j j

j

1j+1 2 0=
1 2 0

2 22

1 2

( )− I − 22 − 2

I2+1 2+
  

…(ii)
Writing Eqs (i) and (ii) in matrix form,

1 1 1

1 2

5 0

0
1

2−
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j j1 −1

j

I

I

°

By Cramer’s rule,

       
I

I I

2

2

1 1 5 0

1 0

1 1 1

1 2

1 39 56 31

1 39 56 31

=

1 5

−

−

= 1 39

=I2

j

j

j j1 −1

j

°

° Α

° Α

. .39 5639

. .39 56

 

Case II Calculation of current I when excitation and response are interchanged (Fig. 6.181)

I

1 Ω

2 Ω

I1 I2

−j− 1 Ω

j1 Ω
+

−
5 ∠0° V

Fig. 6.181

Applying KVL to Mesh 1,

−1I

I

1

2

1 0

1 0I2I

j

jI1I

( )1 2I I1I 21I

( )1 1j11
  

…(i)

Applying KVL to Mesh 2,

     
− ∠

− = −
j j

j

1 1j+ 2 5− 0 0=
1 2 5 0∠

2 22

1 2

( )− I − 22 − 2

I2+1 2+
°

°
  

…(ii)

Writing Eqs (i) and (ii) in matrix form,

1 1 1

1 2

0

5 0
1

−
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

=
−5

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j j1 −1

j

I

I2 °
By Cramer’s rule,

I

I I

1

1

0 1

5 0 2

1 1 1

1 2

1 38 123 69

1 39 56 31

=
−5

−

= ∠1 38 −

= 1 39

j

j j1 −1

j

°
° Α

° Α

. .38 123∠38

. .39 5639

 

Since the current I is same in both the cases, the reciprocity theorem is verifi ed.
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 Example 6.57  In the network of Fig. 6.182, fi nd the voltage V
x
 and verify the reciprocity theorem.

10 Ω

Vx

j5 Ω −j− 2 Ω

j5 Ω

−

+
20 ∠90° A

Fig. 6.182

Solution

Case I Calculation of voltage V
x
 when excitation and response are interchanged. (Fig. 6.183)

10 Ω

Vx

Ix

j5 Ω −j− 2 Ω

j5 Ω

−

+
20 ∠90° A

Fig. 6.183

By current division rule,

I

V I

x

x xV I

= = ∠( )∠
( )j+

( )j+ j ( )j j−
.∠.

( )j

) ( j
17 77 91°= ∠)

( )j+
1 46 77 91 Α

=== ( )− ( .) ( 4. 6 7∠ 7 9. 1 1∠−∠ 2 0. 9°) 34.92 ° V

Case II Calculation of voltage V
x
 when excitation and response are interchanged (Fig. 6.184)

+

−

10 Ω

Vx

Ix

j5 Ω −j− 2 Ω

j5 Ω

20 ∠90° A

Fig. 6.184

Ix = ∠ =(
( )j−

( )j− j ( )j j+
20 90

) ( jj
3 1. 2 3∠−∠ 8 6. 6°) °Α

  
VxV x( )j ( )j ( .IIxI) ( j 1. 2 3∠− 8 6. 3=6 4 8. 8 1∠− 2 0. 9°) °V

 

Since the voltage V
x
 is same in both the cases, the reciprocity theorem is verifi ed.
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 Example 6.58  Find I and verify the reciprocity theorem for the network shown in Fig. 6.185.

3 Ω

+

1 Ω 2 Ω

4 Ω j3 Ω

2 Ω4 Ω

2 Ω10 ∠45° V

Fig. 6.185

Solution

Case I Calculation of I when excitation and response are not interchanged (Fig. 6.186)

3 Ω

+

1 Ω 2 Ω

4 Ω j3 Ω

j2 Ωj4 Ω

j2 Ω
I2 3

I

I1

10 ∠45 V

Fig. 6.186

Applying KVL to Mesh 1,

             
10

5

∠ −45

10
  

…(i)

Applying KVL to Mesh 2,

      
=
=

0

3 03

− −2 3

I

2

−
  

…(ii)

Applying KVL to Mesh 3,

             
−

=
0=

− −
  

…(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

                   

4 0 10 45

0

0

1

2

3

−
− +

⎤ ∠⎡
1

I

I

I

°
 

By Cramer’s rule,

                       
I3

4 10 45

1 0

0 3 0

4 0
=

−4

−4
=

j

1

∠704 72

0 72

° Α

Α∠
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Case II Calculation of I when excitation and response are interchanged (Fig. 6.187)

3 Ω 1 Ω 2 Ω

4 Ω j3 Ω

j2 Ωj4 Ω

j2 Ω

+I2 I3
I 10 ∠45° V

Fig. 6.187

Applying KVL to Mesh 1,

− + =−
+
I

−
  

…(i)

Applying KVL to Mesh 2,

=
0

3 03I

2

−
  

…(ii)

Applying KVL to Mesh 3,

− = ∠
+ ∠ 5 0

10 45°
  

…(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

4 0 0

0

10 45

1

2

3

−
− +

⎤ ⎡ ⎤

∠

⎡
1

I

I

I

⎤

By Cramer’s rule,

I1

0 4 0

0 5

10 5

4 0
0 704=

+
∠ −45

−
− +

j j3 2 +

1

= ∠

30 72

0 72

°Α

°Α=

Since the current I is same in both the cases, the reciprocity theorem, is verifi ed.

6.9    MILLMAN’S THEOREM

Millman’s theorem states that ‘If there are n voltage sources V
1
, V

2
. … V

n
 with internal impedances Z

1
, 

Z
2
, … Z

n
 respectively connected in parallel then these voltage sources can be replaced by a single voltage 

source V
m
 and a single series impedance Z

m
.

V
Y

Z

m
n

m

+ + +
+ +

1 1

…
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 Example 6.59  Find the current through the 40 W resistor for the network shown in Fig. 6.188.

−j− 20 Ω j20 Ω

30 Ω 10 Ω

40 Ω

+ +

− −
10 ∠0° V 20 ∠0° V

Fig. 6.188

Solution

Step I Calculation of V
m

V
V Y V Y

Y Y
mVV

j j
=

+
=

−
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠1 1V YV Y 2 2V YV Y

1 2Y YY Y

1

30 20

1

10 20
( )∠10 0 ( )∠20 0

⎛⎛⎛ ⎞⎞⎞
+

1
) ( ∠20 0 ⎟⎟

⎞⎞⎞⎞
⎠⎠⎠⎠

−
+

=
1

30 20

1

10 20

18 2 1∠− 5 95

j j+20 10

. .2 1∠ 5 °V

Step II Calculation of Z
m

Z
Y Y Y

m
mYY

j j

= =
+

=

−
+

= ∠ Ω
1 1 1

1

30 20

1

10 20

20 1 29 74
1 2YY YY+

. .∠15 29 °  

Step III Calculation of I
L
 (Fig. 6.189)

+

−
18.2 ∠−15.95° V

20.15 ∠29.74° Ω

IL

40 Ω

Fig. 6.189

IL =
∠

=
18 2 1∠− 5 95

20 15 29 74
0 31 2∠− 5 81

. .2 1∠ 5

. .∠15 29
. .31 2∠ 5

°
° + 40

° Α

 Example 6.60  Find the current I in the network shown in Fig. 6.190.

10 ∠0° V 20 ∠0° V

−j− 20 Ω

40 Ω

30 Ω

j20 Ω

10 Ω

+ +

−−

I

Fig. 6.190
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Solution The network is redrawn as shown in Fig. 6.191.
I

−j− 20 Ω j20 Ω

30 Ω
40 Ω

10 Ω

++

−−
20 ∠0° V10 ∠0° V 0 V

Fig. 6.191

Step I Calculation of V
m

V
V Y V Y

Y Y
mVV

j

j

=
+

=

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+
+

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+
+

1 1V YV Y 2 2V YV Y

1 2Y YY Y

0
1

40

1

10 20

1

40

1

10

( )∠20 0

2022

14 86 21 8= ∠14 86 −. .86 21∠86 ° V

 

Step II Calculation of Z
m

Z
Y Y Y

m
mYY

j

= =
+

=
+

+

= ∠ Ω
1 1 1

1

40

1

10 20

16 61 41 63
1 2YY YY+

. .∠61 41 °  

Step III Calculation of I (Fig. 6.192)

+

−

+

−
10 ∠0° V 14.86 ∠−21.8° V

16.61 ∠41.63° Ω
30 Ω

−j− 20 Ω

I

Fig. 6.192

I =
10 14 86 21 8

30 20 16 61 41 63
0 1 136 47

− ∠14 86 −
+20− ∠

= ∠0 15
. .86 21∠86

. .61 41∠
. .5 136∠15

°
°

° Α
j

 Example 6.61  Apply the dual Millman theorem and fi nd the power loss in the (2 + j2) W impedance.

10 A 20 A

2 Ω

4 Ω 5 Ω

j2 Ω

Fig. 6.193
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Solution

Step I Calculation of I
m

I
I Z I Z

Z Z
m =

+
= =1 1Z 2 2Z

1 2Z

+
4 5+

15 56
( )10 ( )4 ( )20 ( )5

. Α

Step II Calculation of Z
m

Z Z Zm = +Z = = Ω1 2Z+ 4 5+ 9

Step III Calculation of P (Fig. 6.194)

2 Ω
9 Ω

IL

j2 Ω

15.56 A

Fig. 6.194

By current division rule,

IL

L L

j

P RIL L

= ×
+

= ∠ −

=LRIL L × =

15 56
9

9 2+ 2
12 53 10 3

53 2 3142 2R 53

. .×56 .

( .1212 )

° Α

W

 Example 6.62  In the network shown in Fig. 6.195, what load Z
L
 will receive the maximum power. 

Also fi nd maximum power.

5 Ω j5 Ω −j− 4 Ω
3 Ω

50 ∠0° V 25 ∠90° V

+

−
ZL

+

−

Fig. 6.195

Solution

Step I Calculation of V
m

V
V Y V Y

Y Y
mVV

j j
=

+
=

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠1 1V YV Y 2 2V YV Y

1 2Y YY Y

1

5 5j+
1

3 4j

1

5

( )∠50 0 ( )∠25 90
⎛⎛⎛ ⎞⎞⎞

+
1

) ( ∠2 90

++
+

=

j j5

1

3 4j−

9 81 7∠− 8 69. .81 7∠ 8 °V
 

Step II Calculation of Z
m

Z
Y

=
Y Y

m
mYY

j j

j= =
+

= − Ω − Ω
1 1 1

1

5 5j+
1

3 4j

4 39∠ − 6 Ω = 23 1
1 2Y YY Y

. .39 1∠ 5 ( .4 . )15  
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Step II Calculation of change in current by compensation theorem

    
δ

δ
Zδ

V I Zδ
= =

=δI Z ° − ∠
( ) ( ) ( )−

( . ) ( ) .

+ −
4. 4 2∠ − 4−5°) ( 1) = 94 1

j j−) ( +
jc LV IV I

Ω
6966 04. ° V

The compensating network is shown in Fig. 6.208.

         

δIδδ L
j j

= −
∠ °
° + j

= − °

5 94 0

2 94 1∠− 1 31 5° + 2 4 1

1 52 1∠− 7 18

. .∠94 69

. .94 1∠ 1

. .52 1∠ 7 A

Exercises

j2 Ω

5 Ω

+

−

2.94 ∠−11.31° Ω

d IL

5.94 ∠169.04° V

(−4 − j1) Ω

Fig. 6.208

Find the current through the 3 6.1 + j4 Ω
impedance in Fig. 6.209.

3 Ω 20 Ω

10 Ω

10 ∠0° V
j5 Ω

j2.5 Ω

+ −

j4 Ω

Fig. 6.209

[0]

In the network of Fig. 6.210, fi nd 6.2 V
0
.

2 Ω 2 Ω 2 Ω

10 ∠0° V j2 Ω j2 Ω V0

+

−

j2 Ω
+

−

Fig. 6.210

[1.56 ∠128.7° V]

Find the current 6.3 I
3
 in the network of Fig. 

6.211.

5 Ω

5 Ω

I3

j2 Ω

j2 ΩI1
−j− 4 Ω

50 ∠45° V

+

−

Fig. 6.211

[11.6 ∠113.2° A]

In the network of Fig.6.212, fi nd 6.4 V
2
 which 

results in zero current through the 4 Ω
resistor.

5 Ω 4 Ω 2 Ω

50 ∠0° V

+

−
j2 Ω −j− 2 Ω V2

+

−

Fig. 6.212

[26.3 ∠113.2° V]

NODE ANALYSIS

For the network shown in Fig. 6.213, fi nd the 6.5 

voltage V
AB

.

MESH ANALYSIS
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5 Ω A

5 Ω
20 Ω

B

j20 Ω
100 ∠45° V

+

−

Fig. 6.213

[75.4 ∠55.2° V]

Find the voltages at nodes 1 and 2 in the 6.6 

network of Fig. 6.214.

10 Ω 1 22 Ω

j5 Ω
j4 Ω

3 Ω

−j10 Ω50 ∠0° V

+

−

Fig. 6.214

[15.95 ∠49.94° V, 12.9 ∠55.5° V]

In the network of Fig. 6.215, fi nd the current 6.7 

in the 10 ∠30° V source.

5 Ω

3 Ω 5 Ω

2 Ω

−j− 2 Ω j5 Ω

−j− 2 Ω

10 ∠30° V

+

−

Fig. 6.215

[1.44 ∠38.8° A]

SUPERPOSITION THEOREM

For the network shown in Fig. 6.216, fi nd the 6.8 

current in the 10 Ω resistor.

3 Ω

5 Ω10 Ω

j4 Ω
100 ∠0° V

−j− 5 Ω

−

+
+

− 50 ∠30° V

Fig. 6.216

[73.4 ∠−21.84° A]

In the network of Fig. 6.217, fi nd the current 6.9 

through capacitance.

5 Ω

−j5 Ω

j1 Ω

10 ∠0° V
+

+

−

20 ∠0° V
−

Fig. 6.217

[4.86 ∠80.8° A]

THEVENIN’S THEOREM

Obtain Thevenin’s equivalent network for the 6.10 

network shown in Fig. 6.218.

j20 Ω

40 Ω

A B

50 Ω

1000 Ω
1000 Ω

−j− 400 Ω

50 ∠0° V

+

−

Fig. 6.218

[0.192 ∠−43.4° V, 88.7 ∠11.55° Ω]

Obtain Thevenin’s equivalent network for 6.11 

Fig. 6.219.

10 ∠0° V

+

−

10 Ω j16 Ω j5 Ω

10 Ω

j4 Ω +

−
10 ∠90° V

Fig. 6.219

[11.17 ∠−63.4° V, 10.6 ∠45° Ω]

NORTON’S THEOREM

Find Norton’s equivalent network for Fig. 6.12 

6.220.
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j5 Ω

j5 Ω

j10 Ω
5 Ω

5 Ω

50 ∠90°V
+ −

50 ∠0°V

+ −

A B

Fig. 6.220

[2.77 ∠–33.7° A, 2.5 + j12.5 Ω]

Find the current through the (3 6.13 + j4) Ω
impedance in the network of Fig. 6.221.

5 Ω

3 Ω

j5 Ω

+

−
50 ∠0°V

+

−
50 ∠90°V

j4 Ω

Fig. 6.221

[8.3 ∠85.2° A]

MAXIMUM POWER TRANSFER

THEOREM

Determine the maximum power delivered to 6.14 

the load in the network shown in Fig. 6.222.

10 Ω j15 Ω 5 Ω −j6 Ω

−j10 Ω
3 Ω

j4 Ω

ZL50 ∠0° A

Fig. 6.222

[1032.35 W]

For the network shown in Fig. 6.223, fi nd the 6.15 

value of Z
L
 that will receive the maximum 

power. Determine also this power.

2 Ω

4 Ω

j5 Ω

−j3 Ω

ZL

50 ∠0°V
+

−

Fig. 6.223

[3.82 − j1.03 Ω, 54.5 W]

Objective-Type Questions

In Fig. 6.224, the equivalent impedance seen 6.1 

across terminals a, b, is

2 Ω 4 Ω

4 Ω2 Ω
−j4 Ω

j3 Ω

Zeq

Fig. 6.224

(a) 
16

3
Ω  (b) 

8

3
Ω

(C) 
8

3
+ 12j+

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠

Ω  (d) none of the above

The Thevenin equivalent voltage 6.2 V
Th

appearing between the terminals A and B of 

the network shown in Fig. 6.225 is given by 

j2 −j6 j4100 ∠0° V

3 Ω
A

B

+

−

VTh

Fig. 6.225

(a) j16(3 − j4) (b) j16(3 + j4)

(c) 16(3 + j4) (d) 16 (3 − j4)

A source of angular frequency of 1 rad/s has a 6.3 

source impedance consisting of a 1 Ω resistance 
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